Brigham Young University
 BYU ScholarsArchive

Ribosomally Synthesized and Post-Translationally Modified Peptides as Potential Scaffolds for Peptide Engineering

Devan Bursey
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

BYU ScholarsArchive Citation

Bursey, Devan, "Ribosomally Synthesized and Post-Translationally Modified Peptides as Potential Scaffolds for Peptide Engineering" (2019). Theses and Dissertations. 8124.
https://scholarsarchive.byu.edu/etd/8124

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

Potential Scaffolds for Peptide Engineering

Devan Bursey

A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science

Joel S. Griffitts, Chair William R. McCleary
David L. Erickson

Department of Microbiology and Molecular Biology
Brigham Young University

Copyright © 2019 Devan Bursey

All Rights Reserved

ABSTRACT
Ribosomally Synthesized and Post-Translationally Modified Peptides as Potential Scaffolds for Peptide Engineering
Devan Bursey
Department of Microbiology and Molecular Biology, BYU Master of Science

Peptides are small proteins that are crucial in many biological pathways such as antimicrobial defense, hormone signaling, and virulence. They often exhibit tight specificity for their targets and therefore have great therapeutic potential. Many peptide-based therapeutics are currently available, and the demand for this type of drug is expected to continue to increase. In order to satisfy the growing demand for peptide-based therapeutics, new engineering approaches to generate novel peptides should be developed. Ribosomally synthesized and posttranslationally modified peptides (RiPPs) are a group of peptides that have the potential to be effective scaffolds for in vivo peptide engineering projects. These natural RiPP peptides are enzymatically endowed with post-translational modifications (PTMs) that result in increased stability and greater target specificity. Many RiPPs, such as microcin J25 and micrococcin, can tolerate considerable amino acid sequence randomization while still being capable of receiving unique post-translational modifications. This thesis describes how we successfully engineered E. coli to produce the lasso peptide microcin J25 using a two-plasmid inducible expression system. In addition, we characterized the protein-protein interactions between PTM enzymes in the synthesis of micrococcin. The first step in micrococcin synthesis is the alteration of cysteines to thiazoles on the precursor peptide TclE. This step is accomplished by three proteins: TclI, TclJ, and TclN . We found that a 4-membered protein complex is formed consisting of TclI, TclJ, TclN, and TclE. Furthermore, the TclI protein functions as a central adaptor joining two other enzymes in the Tcl pathway with the substrate peptide.

Keywords: peptide engineering, post-translational modifications, thiazole, lasso peptides, thiopeptides

ACKNOWLEDGEMENTS

I would like to acknowledge the support of my advisor Joel Griffitts who has been a great mentor and has helped me see what it requires to become a good scientist. I would also like to thank the other members of my committee William McCleary and David Erickson for their insight, encouragement and expertise with my academic endeavors. In addition, I would like to thank the members of the Griffitts lab as well as my cohort for their friendship and reassurance which has allowed me to enjoy my time spent here.

I would also like to acknowledge the help and support from our collaborators Kathryn Bewley and Sue Miller who have worked at UCSF on the micrococcin pathway and whose work has greatly influenced my science. In addition, I would like to acknowledge Phil Bennallack, whose previous work in the Griffitts lab on micrococcin has laid the groundwork for my research.

Lastly, I would like to thank my family, especially my parents for always encouraging and supporting me. In addition, I would like to thank my friends for their help.

TABLE OF CONTENTS

TITLE PAGE
ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF TABLES viii
LIST OF FIGURES ix
CHAPTER 1: Introduction 1
1.1 The power of peptides as potential therapeutic molecules 1
Global peptide-based therapeutic market 1
1.2 Engineering peptides with designer modifications 3
D- vs L- amino acid incorporation 4
Stapled peptides 5
Need for innovative peptide library design 5
Synthesizing peptides chemically versus in cells 6
Post-translational modification installation 7
1.3 Natural post-translationally modified peptide pathways as potential library scaffolds 9
Introduction to ribosomally synthesized and post-translationally modified peptides 9
Introduction to lasso peptides 10
Introduction to thiopeptides 11
Microccocin, a model thiopeptide 12
1.4 Heterocycle formation using TOMM biosynthetic enzymes 14
Heterocycle installation 14
Processing requirements for TOMM enzymes 15
1.5 Summary of subsequent chapters 18
CHAPTER 2: Lasso peptides as scaffolds for a high throughput screen of novel antimicrobial peptides 20
2.1 Introduction 20
Lasso peptides as peptide scaffolds 20
Massively parallel screening for bioactivity of randomized RiPPs in vivo 21
2.2 Experimental Methods 24
Strains and culture conditions 24
Plasmid construction 25
Fluorescent assays 25
Miller assays 25
Growth curves 26
2. 3 Results 26
Promoter optimization 26
A synthetic inducible MccJ25 expression system 27
Preparing McjA for easy core peptide randomization 27
2.4 Discussion 30
CHAPTER 3: Mapping interactions between micrococcin biosynthetic enzymes 33
3.1 Abstract 33
3.2 Introduction 33
The microccocin biosynthetic pathway 34
3.3 Experimental Procedures. 35
Strains and culture conditions 35
Plasmid construction 37
Tcl protein expression and purification 37
Mass spectrometry analysis of TcIE processing 38
Modeling of Tcl protein structures 40
3.4 Results 40
Functional Tcl proteins can be expressed in E. coli 40
TclI acts as a scaffolding protein in a TclIJNE complex 42
Predicted structural models 44
Further characterization of TclI interaction surfaces with TclJ, TclN, and TclE 46
3.5 Discussion 48
REFERENCES 50
SUPPLEMENTARY INFORMATION 59
CHAPTER 2: Vector sequences 59
Parent Vectors. 59
Inserts 65
CHAPTER 3: Vector sequences 70
Parent vectors 70
Inserts 73
L501A2 vector sequence 77

LIST OF TABLES

Table 1. Approved Therapeutic Peptides 2
Supplementary Table 2. Plasmid Table 69
Supplementary Table 3. Strain Table 69
Supplementary Table 4. Plasmid Table 79
Supplementary Table 5. Strain Table 80

LIST OF FIGURES

Fig. 1. Examples of ways to engineer peptides with unnatural amino acids 4
Fig. 2. Some post-translational modifications found in nature 7
Fig. 3. Depiction of three levels of selectivity exhibited by PTM enzymes 8
Fig. 4. General biosynthetic pathway of RiPPs 10
Fig. 5. Lasso peptide structure 11
Fig. 6. Four representative thiopeptide structures 12
Fig. 7. Micrococcin biosynthesis 13
Fig. 8. Step-wise formation of Cys-derived heterocycles. 16
Fig. 9. Comparison of biosynthetic gene clusters for various. 17
Fig. 10. Microcin J25 biosynthesis 22
Fig. 11. Single amino acid mutation study of McJA from Pavlova, et al. 22
Fig. 12. Overview of massively parallel activity screening (MPAS) 23
Fig. 13. Promoter optimization for E. coli expression 28
Fig. 14. Reconstitution of MccJ25 expression in E. coli 29
Fig. 15. Altering the McjA core peptide to accommodate a unique BamHI site. 30
Fig. 16. Lasso Peptide Library Design. 32
Fig. 17. Micrococcin Synthesis. 36
Fig. 18. Functional expression and purification of thiazole installation proteins from E. coli. 41
Fig. 19. TclI as a central docking protein in the TcIEIJN complex 43
Fig. 20. Hypothetical TclIJN complex models 45
Fig. 21. Structural models for TclI, TclJ, and TclN. 45
Fig. 22. Domain analysis of TclI binding to TclJ, N, and E 47

CHAPTER 1: Introduction

1.1 The power of peptides as potential therapeutic molecules

Peptides are short chains of amino acids that are ubiquitous in nature and are of great interest in the pharmaceutical industry. Peptides are crucial in a wide array of biological pathways and therefore possess a myriad of functions, including hormone signalling, antimicrobial activity, virulence, and cell-cell communication (2, 3). Since peptides are involved in many natural pathways across various species, they may easily be adapted into therapeutics in a way that closely mimics nature $(3,4)$. In addition to having vast target potential, peptides make excellent drug candidates because they typically are highly effective and discriminatory at binding to specific proteins. For example, some natural peptides can bind to various G proteincoupled receptors (GPCRs) and the elongation factor EF-Tu (3-5). Thus, peptides are innately primed with low off-target effects in hosts. Peptides are composed of amino acids, which are abundant in all living organisms, allowing them to also have low-immunogenicity to human hosts (6). This optimal pharmacological profile grants them a unique niche in between small molecules and larger biological entities like monoclonal antibodies (2, 3, 6, 7).

Global peptide-based therapeutic market
Peptide based therapeutics are found across various fields such as oncology, metabolic diseases, cardiovascular health, and infectious diseases (6). Currently there are over 60 peptide drugs approved for use in the United States (Table 1) and over 500 more peptide-based drugs currently in clinically trials $(4,8)$. In 2017 , peptide-based therapeutics sales brought in more than $\$ 20$ billion US dollars alone (3, 8). Some approved peptide-based pharmaceuticals such as calcitonin and ecallantide are described in Table 1. Many of these peptide-based drugs such as liraglutide (trademarked Victoza) are based on naturally occurring peptides (3). Victoza is an analog to a naturally occurring peptide called glucagon-like peptide-1 (GLP-1) (3). In humans

GLP-1 binds to the GLP-1 receptor triggering a biological cascade that enhances the secretion of insulin. Victoza also stimulates increased insulin expression and is available for treatment of treatment type 2 diabetes mellitus (3).

Table 1. Approved Therapeutic Peptides

Peptide	Mode of action	Therapeutic use	Year of Approval
Calcitonin (4, 6)	Calcitonin is a hormone that increases calcium retention	Treatment for bone diseases such as osteoporosis and to reduce high blood pressure	1971
Bivalirudin (6)	It inhibits both circulating and clot-bound thrombin	Thins the blood to prevent blood clots	2000
Daptomycin (6)	Disrupts the bacterial cell membrane	Treatment of grampositive bacterial infections	2003
Enfuvirtide (6)	HIV fusion inhibitor	Treatment of HIV	2003
Ecallantide (9)	Inhibits kallikrein	Treatment for hereditary angioedema	2009
Victoza (6)	Derivative of human incretin, glucagon-like peptide 1 (GLP) and stimulates insulin secretion	Treatment of type 2 diabetes	2010
Afamelanotide (6)	Synthetic peptide analogue of α-melanocyte stimulating hormone and drives melanogenesis	Treatment to prevent skin damage from sun in people with erythropoietic protoporphyria	2015
Tymlos (8)	Selective activation of parathyroid hormone 1 receptor	Treatment for osteoporosis	2017

Giapreza (8)	Acts on the CNS to increase ADH production	Control of blood pressure in adults in critical condition	2017
Macrilen (8)	Mimics the endogenous ligand for Ghrelin	Diagnosis of adult growth hormone deficiency	2017
Trulance (8)	Mimics uroguanylin and guanylin and increases intestinal fluids	Used to treat irritable bowel syndrome with constipation	2017

1.2 Engineering peptides with designer modifications

Despite the success of peptide therapeutics, there are several limitations of native peptides that have tempered their development into drugs. Peptides have low bioavailability because they are easily degraded by digestive enzymes. Thus, most peptide drugs are administered parenterally, a method of drug delivery less attractive to patients $(4,6)$. Once inside the body, peptides have a short half-life because they are cleaved by cellular peptidases and are easily excreted through the kidneys $(4,6)$. Peptides are also often hydrophobic which can make crossing the cell membrane and reaching their molecular targets difficult $(2,6)$. Therefore, scientists have been developing tactics to overcome these apparent handicaps. Many of these solutions consist of particular chemical features such as the incorporation of unnatural amino acids to create D-peptides and stapled peptides (4, 7, 10).
A

Fig. 1. Examples of ways to engineer peptides with unnatural amino acids. A, depiction of L -alanine compared to D-alanine. B, simple representation of how a stapled peptide is made. Two unnatural amino acid with a hydrocarbon chain are incorporated into the peptide. Those two hydrocarbons react to form a heterocyle. The brackets on the peptide chain represent that the bracket region can be expanded to show more residues that are inbetween the two unnatural amino acids.

D- vs L- amino acid incorporation
There are two isoforms for each amino acid (excluding glycine) which are designated as either a D-(right) amino acid or L- (left) amino acid (Fig. 1A.) In nature, biology uses almost exclusively L-amino acids, with a notable exception of the incorporation of D-amino acids into the peptidoglycan of bacterial cell walls $(11,12)$. Therefore, naturally occurring peptides are also composed of L-amino acids which makes them intrinsically susceptible to proteolysis by the many proteases present in vivo thereby decreasing their biostability $(11,12)$. For example, P113D is an antimicrobial drug derived from histatin that has D-amino acids incorporated into it. With the incorporation of D-amino acids P113D has increased stability and becomes biologically active in the sputum of patients with cystic fibrosis unlike the natural L-amino acid version of P113.

Stapled peptides

Another solution to rigidify the structure of a peptide is to create a stapled peptide (5) (Fig. 1B). Linear peptides possess numerous rotatable bonds that allow them conformational freedom to alternate different structures. This physical fluidity can weaken peptide stability (10, 13, 14). A stapled peptide is locked into a fixed conformational structure by hydrocarbon crosslinks. This can be accomplished by incorporating distinct unnatural amino acids into successive turns in the peptide $(10,13,14)$. These amino acids have been modified to contain special hydrocarbon side chains which interact with each other to form a ring structure, effectively securing the α-helix structure of the peptide Fig. $1 B(10,13,14)$. These unnatural amino acids get incorporated into the peptide when the peptide is being chemically synthesized. Then cyclization of the hydrocarbon side chains is initiated by adding various chemical catalysts. One of the first examples of this method was done on an HIV-1 fusion inhibitor T649. When staples were introduced into this peptide it was resistant to chymotrypsin cleavage and demonstrated increased anti-viral activity (14).

Need for innovative peptide library design
Mining peptides from nature is advantageous because they have been evolutionarily selected to bind to their specific target and maintain a certain level of stability; however, there is a limit to the number of naturally occurring peptides $(3,6)$, and natural peptides are not typically perfectly adapted to therapeutic needs. Since the global market for peptide therapeutics is expected to almost double by 2025 reaching approximately $\$ 50$ billion US dollars, it is imperative that novel and innovative peptides be discovered and developed ($3,6,8$). One way of discovering novel peptide drugs is by creating large peptide libraries. These novel peptide libraries can be created chemically or in living cells such as bacteria.

Synthesizing peptides chemically versus in cells
The standard method for chemically synthesizing peptides is a process pioneered by Dr. Robert Merrifield known as solid-phase synthesis (2,6). Solid-phase synthesis is a step-wise process for the C - to N - terminus construction of a polypeptide chain attached to a resin bead (2, 6). One of the advantages of chemically synthesizing peptide libraries is that it is possible to incorporate designer features such as unnatural amino acids which can increase peptide stability (e.g. D-amino acids and stapled peptides). In addition, chemically synthesized peptides can be easily purified since the resin bead acts as a purification $\operatorname{tag}(2,6)$. Some disadvantages to chemically synthesized peptide libraries are low product yield, inability to synthesize large peptides, and peptides are synthesized in individual reactions thus limiting library size. $(2,6,15$, 16).

An alternative method to creating peptides is to genetically engineer bacteria, this can be accomplished by having the desired peptide sequence encoded on a plasmid in the cell and having the ribosome synthesize the product (2). A great advantage to synthesizing peptides in cells is the scalable product yield (6). Another ideal quality is that there is potential to create vast peptide libraries simply by randomizing the amino acid sequence of the peptide encoded on a plasmid. By randomizing five amino acids in a peptide, one can generate approximately 20^{5} (3.2 million) novel peptides. Some major disadvantages to generating peptide libraries in living cells is that overexpressing certain proteins can be toxic to cells, or some proteins may not express well (17). One major drawback of synthesizing peptides produced by bacteria compared to chemical synthesis is that historically bacterially produced peptides cannot be made to incorporate special chemical modifications onto their side chains $(2,6)$. Therefore, developing
methods to make post-translational modifications on peptides is important to enhance the potential of bacteria to generate peptide libraries for therapeutic studies $(18,19)$.

Post-translational modification installation

There are many types of post-translational modifications (PTMs) that occur in a cell, such as glycosylation, lysine acetylation, phosphorylation, ubiquitinylation, heterocycle formation, dehydration, etc. (20, 21) (Fig. 2). These PTMs get incorporated onto peptides through the activity of various enzymes. All PTM incorporating enzymes exhibit a certain affinity for their substrates (22). However, from an engineering perspective, there is a trade-off between substrate-specificity and substrate-permissiveness $(23,24)$. There are varying levels to which an enzyme modulates its selectivity. An enzyme might recognize its substrate based on adjacent or nearby sequence (regioselectivity), identity of the modified side chain (chemoselectivity), or through remote sites on the substrate protein (alloselectivity) (Fig. 3). Some enzymes, such as

ubiquitinated lysine ubiquitinated lysine acetylated lysine

methylated lysine

O-GIcNAc glycosylation

Fig. 2. Some post-translational modifications found in nature. Chemical structures for several different post translational modifications.

Fig. 3. Depiction of three levels of selectivity exhibited by PTM enzymes. See text for details.
kinases, exhibit remarkable specificity for their substrate based on these three levels. Many kinases require serine/threonine (or tyrosine) at the phosphorylation site (chemoselectivity), preferring side chains in close proximity to residues of phosphorylation (regioselectivity) and often binding with the substrate peptide on far-away regions from the enzyme active site (alloselectivity) (25-27). Other enzymes are far looser in their level of specificity. For example, the cyanobactin subtilisin-like serine protease PatG is an enzyme responsible for the macrocyclization in the cyanobacterial patellamide pathway. It exhibits a fairly relaxed substrate specificity so long as a short C-terminal sequence AYDE (E) is present $(28,29)$. This allows PatG to act on 29 known natural variant patellamide-precursor peptides (29). Interestingly, PatG can form macrocyles anywhere between 5 to 22 amino acids in size. In addition, a study was carried out using synthetic peptides and PatG, which showed that PatG can act on peptides of varying length and even those that contain unnatural amino acids and D-amino acids (30).

Substrate promiscuity does come at a cost, as PatG reactions tend to happen at a very slow rate (30). Most widely tolerant PTM enzymes have a decreased kinetic rate (19). These loose PTM
enzymes with low regioselectivity are of great interest. They can be developed into a powerful tool that would use a constant handle that is sufficient to recruit the PTM enzyme but allows for adjacent peptide sequences to be modified in diverse sequence contexts $(18,19)$. By pairing a promiscuous PTM enzyme with a variety of random peptides bearing the appropriate PTM enzyme-recognition handle, it would be possible to generate a large post-translationally modified peptide library in bacterial cells $(18,19,31,32)$. There is also the potential that one could pair two promiscuous enzymes from different biosynthetic pathways together to generate even more complex and structurally diverse peptide libraries $(18,19)$. An ideal platform would use enzymes with minimized regioselectivity (i.e. many sequence contexts are tolerated) but maintain high chemoselectivity and alloselectivity. An enticing natural template for this type of bioengineering project are ribosomally synthesized and post-translationally modified peptide biosynthetic pathways, such as thiopeptides and lasso peptides.

1.3 Natural post-translationally modified peptide pathways as potential library scaffolds

 Introduction to ribosomally synthesized and post-translationally modified peptidesRibsomally synthesized and post-translationally modified peptides (RiPPs) possess many enzymatic chemical alterations which drastically alter their structures and functions. RiPPs are produced by many different organisms and there are currently over 20 different classes of RiPPs such as lanthipepides, cyanobactins, thiopeptides, proteucins, microviridins, bottromycins, lasso peptides and linaridians $(33,34)$. Several of these families lend themselves to in vivo randomization, therefore they have the potential to be used as scaffolds to generate thousands of new potentially biologically active peptides ($18,19,31,32$). While each RiPP family possesses a unique structural arrangement with a distinctive profile of PTMs, RiPPs generally follow the same biosynthetic logic (Fig. 4) (35). RiPPs are synthesized on the ribosome as linear precursor
peptides which are then subsequently enzymatically modified to their final structure. The precursor peptide is composed of two functional parts: the leader region and the core region. The leader region is usually involved in initial recognition by modifying enzymes while the core region receives the modifications and eventually becomes the active peptide product after leader removal (Fig. 4) (33, 35). Since most PTM enzymes recognize the leader peptide, RiPP core peptides can be mutated and the enzymes can still modify them provided the leader peptides remains intact $(18,19)$. Lasso peptides and thiopeptides are the two families of RiPPs that will be elaborated on further $(31,32)$.

Fig. 4. General biosynthetic pathway of RiPPs. RiPP maturation begins with the production of a bipartite precursor peptide. This peptide consists of an N-terminal leader and a C-terminal core. The core gets extensively modified by PTM enzymes and the leader gets cleaved from the altered core to result in the mature RiPP.

Introduction to lasso peptides
Lasso peptides are a RiPP family that were first discovered in 1991 and are primarily produced by Proteobacteria and Actinobacteria (36). There are currently 35 known lasso peptides (36). Lasso peptides follow the same general maturation pathway as other RiPPs, beginning as a bipartite precursor peptide that gets transformed into a mature peptide by enzymes $(32,36,37)$. These lasso peptides exhibit a wide array of functions, including antimicrobial
activity, and are characterized by their unique, knot-like shape (Fig. 5) $(32,36,37)$. The Cterminal tail gets threaded through a 7-9 amino acid N -terminal ring, forming a loop (36, 38-40). The loop topology is usually stabilized by steric interactions and their structure makes them highly resistant to proteases. There is evidence in the literature that some lasso peptides, like microcin J 25 , can be modified to produce thousands of unique peptides $(1,32,37)$.

Fig. 5. Lasso peptide structure. A, a simple graphic to show the general structure of lasso peptide. B, the structure of lasso peptide microcinJ25.

Introduction to thiopeptides

Thiopeptides are a large RiPP family that boasts over 100 members (Fig. 6) (41, 42). They make attractive scaffolds for engineering novel peptides due to their wide variety of biological properties (31). Many possess antimicrobial activity, specifically against Grampositive bacteria usually through inhibition of translation either by interfering with the elongation factor EF-Tu or the 50S ribosomal subunit $(41,43)$. In addition, they have demonstrated antiviral, anti-parasitic, immunosuppressive, and anti-proliferative effects $(41,43)$. The hallmark of a thiopeptide is a six-membered nitrogenous ring that closes a peptide macrocycle. Certain thiopeptides such as thiostrepton A contain two macrocycles. In addition, thiopeptides also

Micrococcin

Fig. 6. Four representative thiopeptide structures. Thiostrepton A and nosipeptide are bimacrocyclic thiopeptide structures. Micrococcin and thiomuracin are both monomacrocylic thiopeptide structures. contain azoles rings (thiazoles and oxazoles), dehydroamino acids, and other pathway-specific alterations (41, 43, 44). Thiopeptides begin as linear precursor peptides 20-110 amino acids in length which are then enzymatically endowed with chemical alterations. Canonically, the Cterminal core peptide is used as the substrate for all the subsequent PTMs. The N-terminal leader region is usually involved in initial recognition by modifying enzymes, but eventually it is cleaved and only the core remains in the final peptide architecture.

Microccocin, a model thiopeptide
We have been studying the archetypal thiopeptide micrococcin that is produced by gram positive bacteria species like Macrococcus caseolyticus and Bacillus cereus (43) (Fig. 6.). In recent years, a plasmid-based gene cluster for the production of micrococcin from Macrococcus

Fig. 7. Micrococcin biosynthesis. A, Gene cluster for micrococcin synthesis. B, biosynthetic pathway of micrococcin synthesis.
caseolyticus has been described $(42,45)$. The gene cluster for complete micrococcin synthesis in the M. caseolyticus system has been identified, and consists of 12 protein-coding genes (8 of which are required for micrococcin biosynthesis), making it a relatively simple model thiopeptide biosynthetic pathway (Fig. 7A) (42). TclE is the precursor peptide which acts as the substrate that gets manipulated by the PTM enzymes to eventually become the mature
thiopeptide. It follows typical RiPP precursor peptide composition possessing a 35 amino acid N terminal leader and a 14 amino acid C-terminal core (Fig. 7B). The maturation of micrococcin begins with the installation of six thiazoles from the six cysteines present in the core region. This step is carried out by three proteins: TclI, TclJ, and TclN. Thiazole installation is followed by a C-terminal decarboxylation step, carried out by TclP (46). Next, serine/threonine dehydration is brought about by TclK and TclL on several serine and threonine residues within the core region. Micrococcin maturation is culminated by a macrocyclization event initiated by TclM forming a pyridine ring out of the two dehydrated serine side chains (Fig. 7). Of greatest interest to us for the future development of creating in vivo systems capable of installing PTMs on peptide libraries are those proteins involved heterocycle formation: TclJ, TclN, TclI, and TclE (42, 43, 45, 46).

1.4 Heterocycle formation using TOMM biosynthetic enzymes

Heterocycle installation
The formation of heterocycles such as thiazoles (derived from cysteines) or oxazoles (derived from serine/threonine) in thiopeptides is a two-step process. This process begins with a cyclodehydration event to form an azoline, followed by a dehydrogenation step to create the more stable aromatic azole (Fig. 8) $(47,48)$. Heterocycle formation is not unique to thiopeptides and is a pattern that appears in many other RiPP families such as cyanobactins and lanthipeptides $(49,50)$. The process involves three different proteins: a heterocyclase, a precursor peptide recognition protein and a dehydrogenase (Fig. 8). The heterocyclase, dehydrogenase, and precursor peptide recognition protein are classified into a group called thiazole/oxazolemodified microcins (TOMM) biosynthetic enzymes (47). Typically, both the heterocyclase and precursor peptide recognizing protein are involved in azoline formation. The heterocyclase is
primarily responsible for catalysis of cyclodehydration. The heterocyclase consists of an ATPdependent YcaO domain with a proline rich C-terminus (PXPXP) which bestows upon it azoline-incorporating capability (51-53). The protein involved in precursor peptide recognition has one domain that usually contains some sort of N -terminal winged-helix-turn-helix structure which is defined as the RiPP precursor peptide recognition element (RRE). This RRE allows the protein to bind to the leader peptide $(35,54)$. This binding presumably helps to accurately guide the core of the precursor peptide to the active site of the heterocyclase. In approximately half of the known TOMM biosynthetic gene clusters the heterocyclase and precursor peptide recognition protein are fused together (e.g. LynD of the aestuaramide pathway and TruD of the trunkamide pathway) showcasing the importance of the involvement of both proteins in cyclodehydration ($30,47,52$). The dehydrogenases are FMN-dependent and oxidize azolines to azoles (Fig. 8). There is great sequence diversity amongst dehydrogenase proteins but they all belong to the nitroreductase superfamily and appear to have a conserved Lys-Tyr motif near the FMN binding site $(55,56)$. Dehydrogenases can function as a single protein or fused to another protein (e.g. PatG involved in patellamide biosynthesis) $(57,58)$. In pathways where the terminal heterocycle form is a thiazoline or oxazoline then a dehydrogenase may be absent $(47,48)$. Processing requirements for TOMM enzymes

The enzymatic requirements for substrate processing, including complex formation, direction of processing, chemo-, regio-, and allo-specificity vary amongst TOMM gene clusters. Some other studied TOMM enzymatic pathways include microcin B17 (59-61), steptolysin S $(62,63)$, hakacin $(54,64)$, patellamide $A(57,65,66)$, and thiomuracin $A(67,68)(F i g .9)$. The order in which post-translational modifications are installed along the core varies from system to system. For example, processing of the core can happen from the N - to C - terminus like in the

Cysteine

Fig. 8. Step-wise formation of Cys-derived heterocycles. A, diagram of two step conversion of cysteine to thiazole. First an ATP-dependent heterocyclase converts cysteine to thiazoline, then an FMN-dependent hydrogenase oxidizes the thiazoline into thiazole. B, diagram of conversion of two step conversion of serine to oxazole. First an ATP-dependent heterocyclase converts cysteine to thiazoline, then an FMN-dependent hydrogenase oxidizes the thiazoline into thiazole.
microcin B17 pathway $(59,64)$. However, in other systems, like BalA1, C- to N-terminal processing can be observed(64) and in some systems, like thiamuracin, heterocycles can be installed in a non-linear fashion (68). The level of promiscuity of the processing enzymes also ranges greatly amongst specific pathways ($30,55,56,64$). RiPP PTM enzymes from cyanobacteria are known to have less stringent regio-, chemo-, and allo- specificity due to the fact that several hypervariable precursor peptide cores are often present in the gene cluster and are each post-translationally modified (19, 29, 58, 66, 69). For example, the cyclodehydratase PatD, involved in patallemide synthesis, has been shown to modify cysteines to thiazolines in many core sequence contexts and lengths just as long as the C-terminal region of the leader peptide is present (70). However, this promiscuity comes at a cost as PatD is slow in converting thiazolines onto cysteines, especially on non-native cores. Conversely, the cyclodehydratase and dehydrogenase in microcin B17 synthesis have rather tight specificity. When mutations are made
(tcl)
Micrococcin Macrococcus caseolytics
(tpd)
Thiomuracin A Thermobispora bispora

(tru)

(pat)
Patallamide A
Prochloron sp.

Microcin B17
Escherichia coli
(balh)
Hakacin
Bacillus thuringiensis

(sag)
Streptolysin S Streptococcus pyogenes

(bmb)
Bottromycin
Streptomyces bottropensis

Precursor peptide
Precursor peptide recognition protein \square Cyclodehydratase \square Dehydrogenase

Fig. 9. Comparison of biosynthetic gene clusters for various. Precursor peptide is represented in black. Precursor peptide recognition peptide is depicted in red. Cyclodehydratase genes are shown in blue, dehydrogenase genes are shown in yellow, and all other genes not necessary for heterocycle formation are shown in gray.
to heterocycle flanking residues in the microcin B17 precursor peptide, then azole formation is thwarted (60). The hakacin biosynthetic gene cluster encodes two precursor peptides BalhA1 and BalhA2, similar to cyanobacteria systems (64). This suggests that the heterocycle installing enzymes would be required to be more permissive. In previous studies it was shown that the cyclodehydratase in the hakacin pathway is very efficient at modifying a scrambled BalHA1 core and the microcin B17 core, but that the residue C 40 in the leader region of the hakacin precursor peptide is necessary (64).

There are thus no definitive rules for enzyme assembly and processing mechanics for TOMM proteins, and so these systems must be studied independently. As a consequence, many pathway-specific details remain elusive. In some cases, like Microcin B17, the cyclodehydratase, precursor recognition protein and dehydrogenase have been found to form a complex $(32,60)$. In TOMM systems there is the potential to mix and match different cyclodehyratases, dehydrogenases, and precursor peptide recognition proteins in order to maximize the number of novel peptides that can be generated. Therefore, evaluating how these enzymes work together (whether in a complex or alone) is important. When diverse noncognate dehydrogenases replaced the cognate dehydrogenase in Microcin B17 synthesis, they were not capable of oxidizing any heterocycles (56). This is perhaps a result of the inability of these new dehydrogenases to form a functional complex with the cyclodehydratase and precursor recognition protein. However, in other pathways such as the BalhA1, BalhD (dehydrogenase) was able to act in isolation to install azoles regardless of the presence of BalhC (precursor peptide recognition protein) or BalhB (cyclodehydratases). In addition, non-native dehydrogenases were able to be exchanged for the native dehydrogenase in the hakacin pathway with thiazoles being formed (56). Many details of how the heterocycle-forming enzymes work together in the micrococcin are unknown. This reinforces the remarkably variable nature of these systems and how each system's properties must be characterized on an individual basis.

1.5 Summary of subsequent chapters

This thesis evaluates the use of RiPP biosynthetic systems and their use in engineering novel peptides. It focuses on two different peptide systems: the lasso peptide microcin J25 and the thiopeptide micrococcin. In chapter two I explore the use of microcin J25 as a peptide scaffold for the discovery of novel antimicrobial peptides through an in vivo high-throughput
screen. Then, in the last chapter I explore the system specific protein-protein interactions between micrococcin heterocycle installing proteins $\mathrm{TclI}, \mathrm{TclJ}$, and TclN with the hope that in future the crucial components of heterocycle formation can be used to generate novel peptides.

CHAPTER 2: Lasso peptides as scaffolds for a high throughput screen of novel antimicrobial peptides

2.1 Introduction

Lasso peptides as peptide scaffolds
Lasso peptides are a family of RiPPs that hold great potential as scaffolds for novel peptide generation. One of the most well-studied yet biosynthetically simple lasso peptides is microcin J25 (MccJ25). MccJ25 possesses antimicrobial activity and is plasmid-encoded in certain Escherichia coli strains. Its biosynthetic gene cluster consists of four genes: $m c j A, m c j B$, $m c j C$ and $m c j D$. The gene $m c j A$ encodes the precursor peptide, while $m c j B / C$ encode the two proteins that comprise the enzymatic knot-tying complex responsible for modifying the precursor peptide $(1,32)$. McjB acts like an ATP-dependent cysteine protease, cleaving the leader peptide from the core and McjC is involved in the formation of the ring (37). The MccJ25 precursor peptide (McjA) is 58 amino acids long, with a 37 - amino acid N -terminal leader peptide and a 21-amino acid C-terminal core peptide (37). A linkage between Glu8 and Gly1 forms the 8amino acid ring of the lasso peptide while the bulky side chains of Phe19 and Tyr20 provide the steric hindrance necessary to keep the loop in place (37, 71, 72) (Fig. 10).

Previous research has shown that the loop region of MccJ25 can be varied considerably and still be recognized by the knot-tying machinery. This possibility for variability makes lasso peptides ideal for bioengineering. For example, one study created all possible single amino acid substitutions in all positions of the 21-amino acid core peptide excluding Glu8 (one of the amino acids involved directly in ring formation) (Fig. 11) (1). They found that most of the positions of the core peptide, except Gly1, Gly2, Glu8, Phe19, and Tyr20, were able to tolerate various changes to the amino acid sequence while still producing a stable, mature, and exported lasso peptide (73). Several of these positions in the core peptide were able to tolerate over fifteen
different amino acid substitutions. This illustrates that there is a lot of flexibility allowed in the amino acid sequence of the loop region. Lastly, another study investigated the effect that various 3-amino acid substitutions in the loop region of the core peptide had on the function of MccJ25. They found that over half of the mutants retained their function (74). This flexibility was further confirmed when three amino acids in the loop region of MccJ25 were swapped out for an integrin binding motif Arg-Gly-Asp (RGD) in order to generate an MccJ25-RGD mutant that was capable of inhibiting integrin, a potential target for cancer therapy $(38,39)$. The resulting peptide was successfully converted into an integrin antagonist with nanomolar effectiveness. This demonstrates that lasso peptides can be bioengineered into compounds with pharmacological properties. It has also been shown that you can shorten the loop region and extend the C-terminal tail below the ring without altering the lasso structure (71). All of this past research highlights the vast potential MccJ25 has to be modified and its ability to be used to create novel lasso peptides.

Massively parallel screening for bioactivity of randomized RiPPs in vivo
MccJ25 seems to possess the flexibility to be modified to produce thousands of unique lasso structures. In addition, like many RiPPs it possesses antimicrobial activity. Due to the increase of antibiotic resistant bacteria, development of novel antimicrobial peptides is ideal. However, one problem when generating thousands of novel peptides is that only a few would be expected to exhibit antimicrobial activity. Therefore, it is necessary to be able to screen through vast numbers of peptides for those that appear to be toxic. We have developed a method to screen through hundreds of thousands of peptides using massively parallel peptide activity screening (MPAS) (Fig. 12). The basis of this platform is to generate a library of hundreds of thousands of variant peptides in a plasmid-based inducible expression system. Random-insert

B
McjA precursor peptide

Fig. 10. Microcin J25 biosynthesis. A, Microcin J25 biosynthetic gene cluster. B, Simple diagram depicting the microcin J25 maturation pathway.

Fig. 11. Single amino acid mutation study of McJA from Pavlova, et al.
Researchers in Pavlova's group performed 380 single-amino acid substitutions.
Amino acid noted in the bars are tolerated mutations for production, maturation and export of MccJ25. The native sequence of McjA core is shown below the chart. (1)
plasmids are transformed into E. coli cells to create a library, where each clone is effectively 'assigned' to produce only one peptide variant. As a result, the E. coli library contains thousands of different peptide variants. Once the library is created, it is mixed and grown under conditions with or without inducer, turning on or off the expression of the potential antimicrobial peptides. Next, Illumina sequencing is performed to obtain DNA sequence data for surviving peptideencoding plasmids. When a cell is assigned a toxic peptide, it will be depleted in the population, eventually causing the DNA sequence for that peptide to be lost from the culture. By comparing the sequences of the induced culture to the un-induced culture, one can identify many potentially toxic peptides, or "hits", by looking for peptide-encoding sequences that are depleted in the induced culture compared to the un-induced. In our lab, we have carried out proof-of-principle work using this MPAS platform on a linear peptide library and obtained hundreds of hits.

Fig. 12. Overview of massively parallel activity screening (MPAS). See text for more details.

In order to perform the future screen to generate non-linear peptides based on RiPP scaffolds (such as a lasso peptide scaffold), an inducible plasmid system must first be developed which allows expression of variant peptides. It is important that the inducible system is extremely tightly controlled so that there is next to no expression of the peptides when uninduced. This is desirable because the peptides that are of the greatest interest are those that will kill the cell. Therefore, if the system is too leaky then we may get antimicrobial peptide activity in un-induced conditions particularly if a peptide is especially toxic, making it difficult for us to identify those highly sought-after toxic peptides. We discuss below a system in which microcin J 25 can be used as a scaffold to generate thousands of novel lasso peptides that can then be screened for antimicrobial activity by MPAS methods. We evaluate the strength and tightness of six different E. coli-derived promoters as well as develop a two-plasmid system for lasso peptide expression using molecular cloning techniques.

2.2 Experimental Methods

Strains and culture conditions

The bacterial strains and plasmids used in this chapter can be found in Tables 2 and 3. Plasmids were constructed and maintained in Escherichia coli strain DH5 α. For growth curves, strains were either based in DH5 α or MDS ${ }^{\text {TM }} 42$ Meta Δ recA E. coli (Scarab genomics). All bacterial cultures were grown in Luria broth (LB: per liter, 10 g Bacto tryptone, 5 g Bacto yeast extract, $5 \mathrm{~g} \mathrm{NaCl}, 1 \mathrm{ml} 2 \mathrm{~N} \mathrm{NaOH}$) or minimal defined media (MDM: $0.06 \mathrm{M} \mathrm{NaCl}, 0.01 \mathrm{M}$ $\mathrm{KH}_{2} \mathrm{PO}_{4}, 0.01 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}, 0.5 \%$ glycerol, $0.002 \mathrm{M} \mathrm{MgSO}_{4}, 0.02 \mathrm{~mL} 10 \mathrm{mM} \mathrm{CaCl} 2,0.2 \mathrm{ml}$ Trace minerals ($200 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$, 400 mg EDTA, $300 \mathrm{mg} \mathrm{FeSO}_{4}$, 50 mg MnSO 4 , $50 \mathrm{mg} \mathrm{ZnSO} 4,25 \mathrm{mg}$ $\mathrm{H}_{3} \mathrm{BO}_{3}, 25 \mathrm{mg} \mathrm{CoCl} 2,5 \mathrm{mg} \mathrm{Na}_{2} \mathrm{MoO}_{4}, 5 \mathrm{mg} \mathrm{CuSO} 4$). Antibiotics used were kanamycin (30 $\mathrm{mg} / \mathrm{ml})$ and chloramphenicol ($30 \mathrm{mg} / \mathrm{ml}$). Cultures were induced for protein expression using 0.3
mM isopropyl β-D-1-thiogalactopyranoside (IPTG), 0.3% L-rhamnose, $0.3 \% \mathrm{~L}$-arabinose, or 0.4 $\mu \mathrm{M}$ anhydrotetracycline (ATc).

Plasmid construction
The $m c j$ genes were synthesized with codon optimization for expression in E. coli. Plasmid construction was carried out using standard molecular cloning procedures. Annotated vector and insert sequence files are given in supporting information file. Complete vector sequences are given in the Supplementary Information. Plasmids and strains employed in this study are given in Supplementary Table 1 and 2.

Fluorescent assays
Cultures of promoter strains were grown overnight and subsequently $20 \mu 1$ were used to inoculate 4 ml LB cultures. These cultures were grown with and without inducer for 8 hours. Optical density of the cultures was measured at $600 \mathrm{~nm}\left(\mathrm{OD}_{600}\right)$. Cultures were then diluted in LB and normalized to the lowest OD_{600}. Arbitrary fluorescent units (AFU) were determined by reading a white polystyrene 96 -well plate on a BioTek plate reader at 509 nm . Final AFU values were normalized to vector-only and blank LB controls.

Miller assays
Strains were grown in LB with and without inducer for approximately 4 hours. Then OD_{600} measurements were recorded for individual cultures. For each assay, $600 \mu \mathrm{l}$ of $\beta-\mathrm{Gal}$ master mix consisting of $600 \mu \mathrm{l}$ Basal Buffer (Basal Buffer: $500 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}, 4.3 \mathrm{~g} \mathrm{Na}_{2} \mathrm{HPO}_{4}, 2.4 \mathrm{~g}$ $\mathrm{NaH}_{2} \mathrm{PO}_{4}, 0.75 \mathrm{~g} \mathrm{KCl}, \mathrm{pH}$ to 7.0 with about $1.5 \mathrm{ml} 2 \mathrm{~N} \mathrm{KOH}, 1 \mathrm{ml} 1 \mathrm{M} \mathrm{MgSO} 4_{-} 7 \mathrm{H}_{2} \mathrm{O}, 1 \mathrm{ml}$ of CHCl_{3}), 0.5 mg ortho-Nitrophenyl- β-galactosidase (ONPG), $0.5 \mu \mathrm{l} 10 \%$ sodium dodecyl sulfate (SDS), $3 \mu \mathrm{l} \beta$-mercaptoethanol (BME), $50 \mu \mathrm{l}$ chloroform, and diluted culture were combined and timer was started. Samples were incubated at $32^{\circ} \mathrm{C}$ until bright yellow color was observed in 1 or
more samples. Stop buffer ($1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ with $1 \mathrm{ml} \mathrm{CHCl}_{3}$) was added to stop reactions. Samples were then vortexed and centrifuged to pellet chloroform and other cellular debris. OD_{420} measurements were taken and Miller units were calculated using the equation $\left(1000 * \mathrm{OD}_{420}\right) /\left(\mathrm{OD}_{600} * t * v\right)$ where $\mathrm{t}=$ assay time in minutes, $\mathrm{v}=\mathrm{volume}$ of cells added in ml corrected for the dilution factor that was performed.

Growth curves
Strains were grown overnight, then a $20 \mu \mathrm{l}$ sample was used to inoculate 4 ml cultures of either LB (Fig 14BC) or MDM (Fig. 14B) with and without their appropriate inducers and with antibiotics. Then OD_{600} measurements were taken at specific time points using a spectrophotometer.

2. 3 Results

Promoter optimization
There are various options in choosing an inducible promoter for vector expression systems. For our MPAS experiments we wanted an inducible promoter with extremely low background activity when uninduced, but that also yields high expression when induced. Therefore, we evaluated the expression profile of several common E. coli-derived promoters: $\mathrm{P}_{\text {araBAD }}, \mathrm{P}_{\text {rhaBAD }}$, two variations on $\mathrm{P}_{\text {lac }}\left(\mathrm{P}_{\text {lacT5 }}(\right.$ lacIWT) $), \mathrm{P}_{\text {lacT5 }}$ (lacIq) $)$, and $\mathrm{P}_{\text {tet }}$ (Fig 13). The two different lacT5 promoters vary in the constitutive promoter region of the lac repressor (LacI). $P_{\text {lacT5 }}$ (lacIq) has an altered -35 region which makes it more canonical which should increase expression of the repressor. We tested each promoter in the context of two different reporters: β galactosidase (originally encoded by the gene lacZ of the lac operon) and monomeric superfolder green fluorescent protein (msfGFP). First, in the data from the Miller assay measuring β-galactosidase, we see that $\mathrm{P}_{\text {rhaBAD }}$ and the two lac promoters appear to give the
lowest amount of background uninduced expression while still leading to a large amount of expression when induced (Fig. $13 F$). Considering the fluorescent data control of expression for $P_{\text {rhaBAD }}$ is extremely tight yet very strong (Fig. 13G). By fluorescence-based assay, the lacT5 promoters yield very low expression of msfGFP while giving the most background expression when uninduced. Interestingly, the $\mathrm{P}_{\text {tet }}$ promoter shines as being a very strong promoter with low uninduced expression when fluorescence is measured. $\mathrm{P}_{\text {araBAD }}$ is arguably the leakiest and least strong promoter of the group.

A synthetic inducible MccJ25 expression system
We wanted to develop a two-plasmid system with distinct promoters in order to selectively turn on expression of either the precursor peptide McjA or the modifying enzymes McjBC or both. From the promoter data, $\mathrm{P}_{\text {rhaBad }}$ and $\mathrm{P}_{\text {tet }}$ promoters were chosen to express McjA and McjBC respectively. While MccJ25 does originate from a single E. coli plasmid we wanted to confirm that our two-plasmid based system still yielded functional MccJ25. When McjA and McjBC were co-expressed, cultures did not appear to grow compared to control strains (Fig. $14 A$). This is indicative that microcin J 25 is being produced and its antimicrobial activity is killing the cells. More detailed growth curves confirm that when expression of all three Mcj proteins is induced, growth of cultures is inhibited compared to uninduced and control strains (Fig. 14BC). This also confirms that our promoters are tight because we are getting normal growth when uninduced.

Preparing McjA for easy core peptide randomization
In future MPAS experiments the core region of McjA will be randomized. In order to make future cloning steps easier we wanted to add a unique BamHI site into the beginning of the core

Fig. 13. Promoter optimization for E. coli expression. Inducible promoters. lacl, araC, rhaR, rhaS, and tetR all encode regulatory proteins. These regulatory proteins bind to operating sites indicated by O_{x}. Promoters are indicated by right angled arrows above genes. CAP represents the CAP/cAMP binding site. RNA polymerase recognition sequence is represented as the $-35 /-10$ region. A, Lac operon. B, arabinose operon. C, rhamnose operon. D, tet operon E, Lac T5 promoter F, Results from Miller assay on promoter strains driving the production of β-galatosidase. Each condition for individual strains was done in triplicate and in LB. Plasmids were in DH5a. F, Results from Miller assay on promoter strains driving the production of β-galatosidase. Each condition for individual strains was done in triplicate and in LB. Strains were in DH5a. G, Results from fluorescent assay on promoter strains driving the production of msfGFP. Each condition for individual strains was done in triplicate and in LB. Strains were in DH5a.

Fig. 14. Reconstitution of MccJ25 expression in E. coli. A, picture of induced cultures in MDM after 24 hrs of growth. When McjABC are co-expressed growth is inhibited. B, growth curve of uninduced cultures in LB. C, growth curve of induced cultures in LB.
(Fig. 15A). This would allow us to easily switch in and out new core sequences. Altering the core to include a BamHI site causes an alanine to serine mutation on the third residue in the core region of McjA. Although we believed that this mutation would be tolerated based on previously described data (Fig. 11) (1), we wanted to confirm this to be true. Growth curves performed with the expressed altered McjA in conjunction with McjBC indicated that active MccJ25 was being created compared to the uninduced and vectors only strain control (Fig. 15B).

Fig. 15. Altering the McjA core peptide to accommodate a unique BamHI site. A, graphical representation of where the BamHI site wlll be inserted into the core and the subsequent mutation it will cause. B, Growth curves confirming production of MccJ25 with altered core including BamHI site. Cultures were grown in MDM.

2.4 Discussion

In future, a small lasso peptide library of hundreds of thousands of clones could be generated by randomizing a nine amino acid section of the loop region of MccJ25. The loop
region can be randomized by genetically modifying $m c j A$ (Fig. 16A). The library insert randomizes the amino acids from tyrosine to isoleucine (Y9 to I17) in the core portion of the peptide. The nucleotide sequence of the random region of the loop is VVTNHTVVTNHTVVT NHTVVTNHTVVT (Fig. 16B). This sequence avoids getting peptides that possess long string of hydrophobic amino acids. Long strings of hydrophobic amino acids are naturally more antimicrobial due to their ability to disrupt cell membranes. We want to avoid these peptides because we want to generate peptides with potentially novel and specific mechanisms of action. This sequence also avoids any stop codons and allows for a variety of charged, polar and nonpolar amino acids. The plasmid containing the modified $m c j A$ would be transformed into a strain of E. coli which has already been transformed with the plasmid containing the modifying enzymes. Clones would then be selected on LB without inducer and combined into a mixed population for subsequent MPAS experiments.

Some of the hits generated from the MPAS experiment indicating that a peptide is toxic would subsequently need to be confirmed as toxic and assessed for lasso-ization by McjB or McjC. This lasso formation could be assessed by either mass spectrometry or potentially simple gel-shift analysis. When gel electrophoresis is performed, there should be a characteristic band shift when the precursor peptide gets cleaved by McjB. The strep-GB1 tag is located on the N terminus of the precursor peptide, and the cleaved leader peptide is missing the 21 amino acid core peptide (2.1 kDa loss) which should lead to a shift in the gel. This method assumes that if McjB is capable of recognizing and cleaving the precursor peptide then McjC should be able to modify the core to produce the lasso peptide. This system is ready to be used in an MPAS experiment and library insert oligos have been purchased; however, MPAS technology was
being further validated using linear peptides for the second time and I moved onto work that will be presented in Chapter 3.
A
McjA

B ${ }_{\text {nHT }}$

UUU	Phe	UAU	Tyr	UGU	Cys
CUU	Leu	CAU	His	CGU	Arg
AUU	Ile	AAU	Asn	AGU	Ser
GUU	Val	GAU	Asp	GGU	Gly

vVT					
CCU	Pro	CAU	His	CGU	Arg
ACU	Thr	AAU	Asn	AGU	Ser
GCU	Ala	GAU	Asp	GGU	Gly

Fig. 16. Lasso Peptide Library Design. A, Detailed description of the exact region of the McjA core that will be randomized. B, Chart illustrates which amino acids are allowed with NHT and VVT. Allowed amino acids are shown in the table with the checkmark below while amino acids that are not allowed are present in the box with the x below. VVTNHT allows for various amino acids, but eliminates the ability to have a long string of hydrophobic amino acids in a row or any stop codons.

CHAPTER 3: Mapping interactions between micrococcin biosynthetic enzymes
Devan M Bursey ${ }^{1}$, Kathryn D Bewley ${ }^{2}$, Philip R Bennallack ${ }^{1}$, Susan S Miller ${ }^{2}$, Joel S Griffitts ${ }^{1}$
${ }^{1}$ Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT
84602 and ${ }^{2}$ Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143

3.1 Abstract

Thiopeptides are bacterially produced bioactive compounds derived from ribosomally synthesized peptides that are extensively post-translationally modified. We have recently elucidated the biosynthetic pathway for the antibacterial thiopeptide micrococcin. This pathway is initiated when six Cys residues in the TclE precursor peptide are converted to heterocyclic thiazoles, through the action of the ATP-dependent cyclodehydratase enzyme TclJ (to form thiazolines), followed by the FMN-dependent dehydrogenase TclN (to form thiazoles). A nonenzymatic protein, TclI, is involved in heterocycle formation; however, its exact role has been unclear. Here we employ structural modeling and biochemical co-purification methods to investigate TclI as an adaptor protein that couples the TclJ and TclN enzyme to the TclE substrate peptide. TclI appears to be a two-domain protein, with the N-terminus binding to TclE and the C -terminus binding to TclJ and TclN . TclI binds to each of its three partners through independent interaction surfaces. We also show that an N-terminal portion of TclJ, in isolation, can associate with TclI.

3.2 Introduction

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are microbially produced natural products that are initially synthesized on the ribosome, and subsequently decorated with numerous post-translational modifications (PTMs) to yield bioactive compounds (33, 35). RiPP precursor peptides generally contain an N -terminal leader sequence involved in recruitment of the enzymes that carry out PTM installation, as well as a C-
terminal "core peptide" region that is the site of the modifications. The final step in RiPP biosynthesis often involves removal of the leader peptide from the modified core. Conversion of core peptide Cys, Ser, and Thr residues to azolines, and their subsequent oxidation to azoles are common steps in RiPP biosynthesis, particularly for cyanobactins (e.g. patallamide and trunkamide), linear azol(in)e containing peptides (LAPs) (e.g. microcin B17 and streptolysin), and thiopeptides (e.g. thiomuracin, and micrococcin) $(28,47,50)$. Thiopeptides constitute a large RiPP family with over 100 known members possessing diverse biological activities, including antimicrobial functions (41, 43). A typical thiopeptide contains several azol(in)e structures, with Cys-derived thiazoles being most prominent. Thiopeptides also feature at least one macrocycle anchored by a six-membered nitrogenous ring derived from dehydroamino acids such as dehydroalanine (41, 43, 44). Thiopeptides may also contain other diverse modifications, including C-terminal decarboxylation (micrococcin (46)), methylation (nocardithiocin (75)), hydroxylation(thiocillin (76), nosiheptide (77)), and glycosylation (thiazomycin (78), glycothiohexide (53)).

The microccocin biosynthetic pathway
Microccocin was the first characterized thiopeptide produced by Bacillus and Macrococcus sp. and its biosynthesis involves several PTMs including thiazoles, dehydroamino acids, C-terminal decarboxylation, and formation of a pyridine ring (43, 45). The M. caseolyticus micrococcin gene cluster is plasmid-encoded and consists of 12 tcl genes, suggesting that it is simpler than the analogous gene cluster in Bacillus cereus ATCC (Fig 17A) (45). The micrococcin precursor peptide TclE is divided into the 35 amino acid residue leader and the 14 amino acid core. Micrococcin biosynthesis begins with the chemical alteration of all six cysteine residues present in the core of TclE to thiazoles. This conversion of Cys to thiazole licenses the
core for subsequent modifications (Fig 17B) $(42,45)$. Each thiazole conversion is a two-step process that necessitates the activity of three proteins: TclI, TclJ, and TclN $(42,45)$. First TclJ, a Thiazole/Oxazole-Modified Microcin (TOMM) cyclodehytradase, alters cysteines to thiazolines in an ATP-dependent manner $(52,53)$. Subsequently, TcIN, an FMN-dependent TOMM dehydrogenase, oxidizes the heterocycles to thiazoles (Fig 1C). TclI is a required non-enzymatic auxiliary protein in the heterocycle forming process $(48,79)$.

TOMM biosynthetic genes are prevalent in many phyla of bacteria and as a result are often genetically diverse (48). Therefore, the specific details of each biosynthetic pathway must be elucidated individually. While the general function of these thiazole incorporating enzymes in micrococcin synthesis is known, information on how these proteins in this system interact with one another is still missing. In this paper, we investigate the general protein-protein architecture of enzymes TclI, TclJ, TclN, and TclE in micrococcin biosynthesis, focusing on the predicted role of TclI as a potential docking protein that interacts independently with TclJ, TclN and TclE. We used a plasmid-based expression system in E. coli to study the interactions of TclIJNE primarily by His 6 -TclI co-purification, SDS-PAGE and predicted structural modeling.

3.3 Experimental Procedures

Strains and culture conditions
The bacterial strains and plasmids used in this study are summarized in Tables S4 and S5 Plasmids were constructed and maintained in Escherichia coli strain DH5 α. For protein expression, plasmids were transformed into strain BL21, Nico 21 (DE3) or DH5 α. All bacterial cultures were grown in Luria broth (LB: per liter, 10 g Bacto tryptone, 5 g Bacto yeast extract, 5 $g \mathrm{NaCl}, 1 \mathrm{ml} 2 \mathrm{~N} \mathrm{NaOH})$. Antibiotics used were kanamycin $30 \mathrm{mg} / \mathrm{ml}$, ampicillin $100 \mathrm{mg} / \mathrm{ml}$, and

B
TCIE precursor peptide
LEADER
Tcll, TcIJ, TcIN (thiazole installation)
SCTTCVCTCSCCTT
(core)
LEADER

TcIP (C-terminal decarboxylation)

TCIK, TCIL (Ser/Thr dehydration)
LEADER
」TclM (macrocyclization)

C
(Tcll)

Fig. 17. Micrococcin Synthesis. A, A map of the native tcl gene cluster from M. caseolyticus. The gene encoding the precursor peptide (TcIE) is colored black, and the genes encoding proteins for thiazole installation (Tcll, TclJ, TcIN) are colored blue. Other essential proteins for complete micrococcin production are shown in gray. Nonessential proteins are shown in white. B, Overview of the micrococcin biosynthetic pathway, with TcIE core peptide modifications brought about by the thiazole installation machinery indicated in blue, and all subsequent modifications indicated in gray. Abbreviations: Tz, thiazolyl; Dc, decarboxyl; Dh, dehydro. C, Two-step conversion of TcIE Cys residues to thiazole via Tcll, TcIJ, and TcIN.
chloramphenicol $30 \mathrm{mg} / \mathrm{ml}$. Cultures were induced for protein expression using 0.3 mM isopropyl β-D-1-thiogalactopyranoside (IPTG).

Plasmid construction
The $t c l$ genes were synthesized with codon optimization for expression in E. coli. Plasmid construction was carried out using standard molecular cloning procedures. Annotated vector and insert sequence files are given in supporting information file. Complete vector sequences are given in the Supplementary Information. Plasmids and strains employed in this study are given in Supplementary Table 3 and 4.

Tcl protein expression and purification
To prepare samples for SDS-PAGE analysis, overnight liquid cultures (4 ml) were grown from single colonies in the presence of appropriate antibiotics. 100 ml cultures were inoculated with 2 ml of overnight culture, allowed to grow at $30^{\circ} \mathrm{C}$ for 1 h , followed by induction for another 8 h at $30^{\circ} \mathrm{C}$. Cells were collected by centrifuging 50 ml of the culture, and cell pellets were frozen at $-80^{\circ} \mathrm{C}$ for a minimum of 1 h . Cell pellets were then subjected to protein purification with either Ni-NTA-linked (for the His6 tag) or glutathione-linked (for the GST tag) resin.

For His 6 purification cell pellets were thawed on ice and re-suspended in 1.5 ml of lysis buffer (50 mM HEPES, $300 \mathrm{mM} \mathrm{NaCl}, 0.2$ \% Triton X-100, $0.5 \mathrm{mg} / \mathrm{ml}$ lysozyme, 40 mM imidazole, 1 mM EDTA). Lysis took place for 1 h at $4^{\circ} \mathrm{C}$. Then cell lysates were sonicated $2 \times 20 \mathrm{sec}$ at power 3 using a probe sonicator to ensure complete lysis. Samples were centrifuged at $13,000 \mathrm{rpm}$ for $9 \mathrm{~min}\left(4^{\circ} \mathrm{C}\right)$ and approximately 1 ml of supernatant was transferred to a new micro centrifuge tube. Supernatant was incubated end over end with 50μ of NTA-nickle
agarose beads at $4{ }^{\circ} \mathrm{C}$ for 30 min . Unless stated otherwise in figure legends the beads were washed $3 \times 1 \mathrm{ml}$ wash buffer (60 mM imidazole, $300 \mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM}$ HEPES) and eluted in $50 \mu \mathrm{l}$ of 2 x SDS sample loading dye (20% glycerol, 83 mM Tri $\mathrm{pH} 6.8,40 \mathrm{mg} / \mathrm{ml}$ sodium dodecyl sulfate (SDS), 0.01% bromophenol blue, $0.03 \mu \mathrm{l} / \mathrm{ml}$ 2-mercaptoethanol).

For GST purifications cell pellets were thawed on ice and re-suspended in 1.2 ml lysis buffer (GST buffer (50 mM Tris $8.0,150 \mathrm{mM} \mathrm{NaCl}$), $0.5 \mathrm{mg} / \mathrm{ml}$ lysozyme, 2 mM EDTA, 0.2% Triton X-100, 1/100 protease inhibitor (Sigma)). Cells were lysed at room temperature for 15 min then placed on ice where dithiothreitol (DTT) was added to a final concentration of 1.5 mM . Samples were sonicated $2 \times 20 \mathrm{sec}$ at power level 3 . Cell lysates were centrifuged at $13,000 \mathrm{rpm}$ at $4{ }^{\circ} \mathrm{C}$ for 9 min to pellet cell debris. Approximately 1 ml of supernatant was transferred to a new microfuge tube. $50 \mu \mathrm{l}$ of unwashed glutathione-agarose beads were added and samples were rotated end over end for 45 min at $4^{\circ} \mathrm{C}$. Slurry was pelleted at $13,000 \mathrm{rpm}$ for 10 seconds. Supernatant was removed and beads were washed $3 \times 1 \mathrm{ml}$ GST buffer. GST buffer was completely removed and proteins were eluted from resin in $75 \mu \mathrm{l}$ of 2 X SDS loading dye.

Purified samples were heated at $100^{\circ} \mathrm{C}$ for 2 min then centrifuged. Unless stated otherwise 5μ l of supernatant was loaded onto a 12% resolving Laemmli gel with a 4% stacking gel. Gels were run using 1 x Laemmli running buffer and were stained overnight in coomassie blue stain then destained before pictures were taken.

Mass spectrometry analysis of TclE processing
For purification of His tagged enzymes for mass spectrometry analysis 25 ml overnight cultures were grown from single colonies. These overnight cultures were then used to inoculate 1 L growths ($30^{\circ} \mathrm{C}$). After 1 h , IPTG was added and the cultures were grown for an additional 6 hours. The cells were harvested by centrifugation and the cell pellets were frozen at $-80^{\circ} \mathrm{C}$
overnight. For co-purification of His6-TclIJ/His6-TclIN/His6-TclIJN the cells were then thawed on ice with the addition of lysis buffer (50 mM HEPES, $150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.8$). A protease inhibitor tablet (Roche), 0.2% Triton X-100 and $0.5 \mathrm{mg} / \mathrm{ml}$ lysozyme were added and the cells were incubated on ice for 1 h . Complete lysis was achieved by sonication for 2 min on ice using a Branson Sonifier 450, followed by centrifugation for 20 min at $32,539 \times \mathrm{g}$. The supernatant was incubated with 1 ml of Talon resin for 30 min at $4^{\circ} \mathrm{C}$. Resin was washed with $3 \times 10 \mathrm{ml}$ lysis buffer, followed by elution with lysis buffer plus 75 mM imidazole ($4 \times 1 \mathrm{ml}$). The elution fractions containing protein were buffer exchanged back into lysis buffer, concentrated and flash frozen with 10% glycerol and stored at $-80^{\circ} \mathrm{C}$.

For purification of GST-tagged TclE, 30 ml cultures were inoculated with 1 mL overnight culture, grown at $37^{\circ} \mathrm{C}$ until an $\mathrm{OD}_{600}=0.6$, then IPTG was added and the cells were grown for an additional 20 hrs at $25^{\circ} \mathrm{C}$. The cells were harvested via centrifugation and the cell pellets were frozen at $-80^{\circ} \mathrm{C}$ for at least 30 min . The cells were then thawed and resuspended in 1 ml lysis buffer (50 mM Tris $\mathrm{pH} 8,150 \mathrm{mM} \mathrm{NaCl}, 0.5 \mathrm{mg} / \mathrm{ml}$ lysozyme, 2 mM EDTA and one Roche protease inhibitor tablet per 10 ml). Complete lysis was achieved after a $15-\mathrm{min}$ incubation at room temperature (RT) in lysis buffer, followed by addition of 1.5 mM dithiothreitol (DTT) and several short sonication pulses with a microtip. The disrupted cells were pelleted at $7,000 \times \mathrm{g}$ to remove insoluble material and the supernatant was combined with $30 \mu \mathrm{l}$ of glutathione-agarose resin (slurry) at $4{ }^{\circ} \mathrm{C}$ for 45 min (rotating). The resin was pelleted and the beads were washed with 50 mM Tris $\mathrm{pH} 8,150 \mathrm{mM} \mathrm{NaCl}$ three times and the peptide was eluted with $40 \mu \mathrm{l}$ buffer plus 10 mM reduced glutathione. The eluant was either frozen at $-80^{\circ} \mathrm{C}$ for later use, or directly treated with tobacco etch virus (TEV) protease and ZipTipped (using the manufacturer's instructions.)

Activity of Tcl enzymes was tested in vitro. $20 \mu \mathrm{l}$ reactions containing 20 mM GST-TclE, 5 mM DTT, 2 mM ATP, $20 \mathrm{mM} \mathrm{MgCl2,1} 1 \mathrm{mM}$ enzymes, and 1 mg TEV protease, were allowed to react for 40 min at RT. Reactions were zip-tipped (using the manufacturer's instructions) and analyzed by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) abbbreviation MS. Modeling of Tcl protein structures

Sequences for TclI, TclJ, and TclN were submitted online to the I-TASSER (Iterative Threading ASSEmbly Refinement) server (80) to predict protein structure. The models with the highest C-score were chosen for each Tcl protein. The top-ranked PDB structural analogs for each each Tcl protein (4BS9, 3E07) were used as a comparative reference. The structural models and reference models .pdb files were downloaded and viewed in USF Chimera(81).

3.4 Results

Functional Tcl proteins can be expressed in E. coli
While an expression system for $t c l$ genes has been described previously in B. subtilis, for simple analysis of the microccocin biosynthetic pathway we wanted to develop a system to express functional Tcl proteins in the gram-negative E. coli. In this change of systems, we wanted to first confirm that our engineered Tcl proteins were capable of being expressed in E. coli. Testing for expression necessitated the ability to be able to purify each protein. Thus, TclE, TclI, TclJ, and TclN were engineered with affinity tags based on previously published results in which the functionality and expression of each protein was tested after the inclusion of an N - or C-terminal affinity tag in B. subtilus(46). Bands corresponding to the correct molecular weight of TclE, TclI, TclJ, TclN appear on a gel when they are individually expressed and affinity purified. All of these bands are absent in the lanes of the control strains, which verifies that all Tcl

C

TcIE peptide species	Calculated mass $[\mathrm{M}+\mathrm{H}]^{+}$
unmodified	5373.9
$6 \times$ thiazole	5253.7
$6 \times$ thiazoline	5265.8
$5 \times$ thiazoline	5283.8

Fig. 18. Functional expression and purification of thiazole installation proteins from E. coli. A, Maps of plasmids used to express affinity-tagged Tcl proteins. Plasmid names are according to the inserted affinity-tagged Tcl protein. Locations of His 6 or GST tags are indicated in gray. Genes encoding Tcl proteins are color coded consistent with other figures in this report. B, SDS-PAGE analysis with coomassie blue staining to detect Tcl protein expression and purification. Whether proteins were purified with nickel-NTA (His6 pull-down) or glutathione-linked (GST pull-down) resins is indicated. M , molecular weight markers; asterisks indicate tagged Tcl proteins, determined by expected molecular weight and comparison to the empty vector lane. C, MS analysis (MALDI-TOF) of thiazole installation on TcIE using purified components from E. coli. Reactions included TEV protease to cleave the leader-core region of TcIE from the GST tag prior to mass analysis. The modified N -terminus of TCIE (after TEV cleavage) is (GGSEFQT...). See Fig. 5C for the complete TcIE peptide sequence.
proteins are capable of being expressed under our conditions (Fig. 18AB).
Although we were able to detect our expressed proteins, it remained unclear whether or not our engineered proteins were functional. To determine whether or not the Tcl proteins were functional we evaluated the conversion of cysteines to heterocycles in the core of TclE in the presence of Tcl proteins purified from E. coli. A major peak corresponding to 6-thiazolines was observed when TclI and TclJ where incubated with TclE. A minor peak representing the near complete 5-thiazolines product was also evident suggesting that in our reaction conditions TclJ was capable of catalyzing complete and near complete conversion to thiazolines in the presence of TclI. TclE in the presence of TclI and TclN appeared the same as the unmodified version. This is because TcIN requires pre-existing thiazolines, which are formed by TclJ , as substrate. When TclI, TclN, TclJ, and TclE were incubated together the data showed complete conversion to 6thiazoles compared to the control (Fig. 18C). This demonstrated that all proteins were functional in vitro.

TclI acts as a scaffolding protein in a TcIIJNE complex
Analysis of the biosynthetic gene cluster for microcin B17 indicated that a trimeric complex formed containing a cyclodehydratase, a dehydrogenase, and a docking protein $(47,60)$. As a result, it is believed that many TOMM biosynthetic enzymes form a complex, although in many cases co-purification data is lacking as typically each protein is individually expressed then combined together in vitro (82). To determine if TclIJNE form a complex, we co-expressed all four proteins, with TclI possessing a His 6 affinity tag (Fig. 19A). After purification of TclI, we were able to see three co-purifying bands that appear to be TclJ, TclN and TclE (Fig. 19B). When the His 6 tag is removed from TclI and the experiment is repeated, all four bands disappear,

Fig. 19. Tcll as a central docking protein in the TcIEIJN complex. A, Maps of plasmid used in the twoplasmid and one-plasmid analyses indicated in (B). These maps are rendered similarly to those shown in Fig. 2A. B, SDS-PAGE analysis with coomassie blue staining to detect Tcl protein expression and copurification. Asterisks indicate Tcl proteins that co-purified with His 6 -tagged Tcll. C, a model depicting the connectivity between Tcl proteins during thiazole installation.
indicating that the inducibly expressed Tcl proteins do not bind to nickel-NTA resin beads nonspecifically in our system. Our data show that a four membered TcIIJNE complex is readily copurified.

The general architecture of the TcIIJNE protein complex was unclear. The Tcl proteins could interact in many different combinations (Fig. 20). TclI exhibits no enzymatic activity and can be used to isolate the TclIJNE complex; therefore, we predict it plays an important role as the scaffolding protein for this complex. We were interested in characterizing the binding partners of TclI. It is possible that TclI could bind directly to one, two or all of the proteins in the complex. We expressed TclII, TclJ, and TclN each individually with His $6-\mathrm{TclI}$ (Fig 3A). TclJ, TclN , and TclE each co-purify independently with TclI (Fig. 3B), leading us to conclude that TclI has three unique interaction surfaces and plays a key role in bringing together the TclJ and TclN enzymes with their substrate. (Fig. 19C).

Predicted structural models
With evidence for a general model in which TclI interacts with TclE, TclJ, and TclN across three separate surfaces we wished to consult structural models of the proteins when making further predictions of the architecture of this complex. Unfortunately, the structures for Tcl proteins are unknown; therefore, we generated predicted structures using an online protein modeler. Interestingly, both the TcII and TclJ models most closely resembled two separate domains of the single polypeptide TruD (PDB:4BS9) (83). TruD is a cyanobactin heterocylase in the trunkamide pathway (Fig. 21A). TclI appears most similarly to the N-terminal domain (NTD) of TruD while TclJ parallels the C-terminal domain (CTD) of TruD. In addition, the N -terminal domain of TclI appears to have an N-terminal winged-helix-turn-helix structure characteristic of a RiPP precursor peptide recognition element (RRE) (35,54). The putative TclN model showed

Fig. 20. Hypothetical TclIJN complex models. Simple depiction of some of the different combinations TcllJN could interact to form a complex.

Fig. 21. Structural models for Tcll, TclJ, and TclN. A, Predicted I-TASSER models for Tcll and TcIJ compared to TruD a cyclodehydratase fromthe trunkamide A pathway. Dashed lines represent regions of potential homology. B, Predicted I-TASSER model for TcIN compared to a putative nitroreductase from cyanobacteria. Dashed lines represent regions of potential homology.
the highest similarity with a cyanobactin nitroreductase (3EO7) (Fig. 21B), which folds into a single globular domain.

Further characterization of TclI interaction surfaces with TclJ, TclN, and TclE
Based on analysis of the predicted structural models we hypothesized that due to the presence of the RRE in the NTD of TclI it should bind to the leader of TclE. In comparison to TruD, it appears perhaps that the CTD of TclI interacts with TclJ. We postulated that TclN might also interact with the CTD of TclI. Co-purification of $\mathrm{TclJ}, \mathrm{TclN}, \mathrm{TclE}$ and $\mathrm{TclE}_{\text {leader }}$ with the affinity tagged NTD or CTD of TclI were performed to evaluate these predictions. TclE does copurify with $\mathrm{TclI}_{\mathrm{NTD}}$, and $\mathrm{TclI}_{\mathrm{NTD}}$ appears to be stabilized in the presence of TclE compared to the control (Fig. 22A). However, it should be noted that when TclE and TclI ${ }_{\text {NTD }}$ are co-expressed, cells grow much slower compared to when TclE is absent, requiring six times the amount of cell culture to reach the same pellet density as all other cultures. Consistent with these observations, TclE does not appear to be pulled down with the $\mathrm{TclI}_{\mathrm{CTD}}$ confirming that TclE appears to bind specifically to the NTD of TclI. Furthermore, $\mathrm{TclE}_{\text {leader }}$ is sufficient for binding to $\mathrm{TclI}_{\mathrm{NTD}}$ (Fig. 22B). In addition, our results support a model in which TclIctd is capable of binding to both TclJ and TclN , since bands representing the correct molecular weight for TclJ and TclN appear when they are coexpressed with the CTD of TclI compared to control strains where TclN and TclJ are absent(Fig. 22A). Structural models for both TclJ and TclI closely resemble TruD. TclJ shows similarity to the CTD of TruD while TclI is similar to the NTD of TruD (Fig. 21). Therefore, we hypothesized that the CTD of TclJ is the region of the protein that binds to TclI. To test this, two versions of the $\mathrm{TclJ}_{\mathrm{NTD}}$ were co-expressed with His6-TclI. From the data, it appears that the NTD of TclJ is adequate for binding to full length TclI (Fig. 22C). Combining this data with our previous data we suggest that the N -terminal domain of TclJ interacts through a surface on the CTD of TclI.

Fig. 22. Domain analysis of Tcll binding to TclJ, N, and E. A, Simple diagram of His6-Tcllntd and His6Tcllctd compared to native Tcll. SDS-PAGE analysis with coomassie blue staining to detect Tcl protein expression and co-purification. Asterisks indicate His6-Tcllntd and Tcl proteins that co-purified with His6tagged Tcllnто/Tсllстд B, Diagram of the two NTD versions of TcIJ used. SDS-PAGE analysis with coomassie blue staining to detect Tcl protein expression and co-purification. Asterisks indicate TclJ proteins that co-purified with His6-tagged TcII. C, Diagram of GST-TcIEfull and GST-TcIE ${ }_{\text {leader. }}$ SDSPAGE analysis with coomassie blue staining to detect Tcl protein expression and co-purification. Asterisks indicate His 6 -TclINTD and Tcl proteins that co-purified with His 6 -tagged Tcll Imidazole, Ni (NTA) beads washed twice D, a more detailed model for how Tcll, TclJ, TcIN and TcIE interact with each other.

3.5 Discussion

We have confirmed that TclIJNE combine to form a four membered complex, and based on the findings in this paper, we have proposed a more detailed model for how these four proteins interact (Fig. 22D). In this model TclI, while not possessing any known enzymatic activity, is the central scaffolding protein for this thiazole installing complex. TcII NTD interacts with the leader region of the precursor peptide TclE. The NTD of TclI is where the RiPP precursor peptide recognition element is (RRE) is proposed to be, therefore it is not surprising that TclE interacts with $\mathrm{TcII}_{\mathrm{NtD}}$. $\mathrm{TclE}_{\text {leader }}$ is sufficient for binding to the NTD of TclI. This corroborates work that has been done with LynD, NisB, and $\operatorname{McbB}(35,54)$. However, our data also suggests that having the core peptide present stabilized the NTD of TclI. TclI binding to TclE most likely positions TclE in a way that directs the core towards modifying enzymes, TclJ and TclN. In our model, the NTD of TclJ binds to the CTD of TclI. It is interesting that TclJ and TclI both mapped to TruD. This lends support to previous research which has described that in approximately half known TOMM biosynthetic gene clusters the cyclodehydratase is fused with an auxiliary protein $(30,47,52)$. Most research on TOMM biosynthetic gene clusters focus on the cyclodehydratases while dehydrogenases have been characterized less $(48,52,53,56)$. With the lack of information on dehydrogenases and the limited structural models we proposed that TclN bound to the CTD of TclI due to the fact that the NTD contains primarily the RRE. In our co-purification experiments we did see that the CTD of TclI was sufficient to bind TclN. Work should continue to be done to determine specific amino acid residues that are required on the interaction surfaces of all proteins in the TclIJNE complex. A greater understanding of TOMM protein complex architecture in micrococcin synthesis as well as other RiPP biosynthetic pathways can be useful for future endeavors to generate novel combinatorial peptides by
potentially allowing researchers to mix and match various cyclodehydratases, dehydrogenases and RRE-containing auxiliary proteins.

REFERENCES

1. Pavlova O, Mukhopadhyay J, Sineva E, Ebright RH, \& Severinov K (2008) Systematic structure-activity analysis of microcin J25. J Biol Chem 283(37):25589-25595.
2. Furman JL, Chiu M, \& Hunter MJ (2015) Early engineering approaches to improve peptide developability and manufacturability. $A A P S J$ 17(1):111-120.
3. Fosgerau K \& Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20(1):122-128.
4. Lau JL \& Dunn MK (2018) Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg Med Chem 26(10):2700-2707.
5. Kaspar AA \& Reichert JM (2013) Future directions for peptide therapeutics development. Drug Discov Today 18(17-18):807-817.
6. Vlieghe P, Lisowski V, Martinez J, \& Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15(1-2):40-56.
7. Bakail M \& Ochsenbein F (2016) Targeting protein-protein interactions, a wide-open field for drug design. Comptes Rendus Chimie 19(1-2):19-27.
8. Al Musaimi O, Al Shaer D, de la Torre B, \& Albericio F (2018) 2017 FDA Peptide Harvest. Pharmaceuticals 11(2):42.
9. Farkas H \& Varga L (2011) Ecallantide is a novel treatment for attacks of hereditary angioedema due to C1 inhibitor deficiency. Clin Cosmet Investig Dermatol 4:61-68.
10. Verdine GL \& Hilinski GJ (2012) Stapled peptides for intracellular drug targets. Methods Enzymol 503:3-33.
11. Feng Z \& $X u B$ (2016) Inspiration from the mirror: D-amino acid containing peptides in biomedical approaches. Biomol Concepts 7(3):179-187.
12. Garton M, et al. (2018) Method to generate highly stable D-amino acid analogs of bioactive helical peptides using a mirror image of the entire PDB. Proc Natl Acad Sci $U S$ A 115(7):1505-1510.
13. Tan YS, Lane DP, \& Verma CS (2016) Stapled peptide design: principles and roles of computation. Drug Discov Today 21(10):1642-1653.
14. Bird GH, et al. (2010) Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic. Proc Natl Acad Sci U S A 107(32):14093-14098.
15. Eichler J, et al. (1995) Peptide, peptidomimetic, and organic synthetic combinatorial libraries. Med Res Rev 15(6):481-496.
16. Houghten RA (1993) Peptide libraries: criteria and trends. Trends Genet 9(7):235-239.
17. Rosano GL \& Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172.
18. Sardar D, Lin Z, \& Schmidt Eric W (2015) Modularity of RiPP Enzymes Enables Designed Synthesis of Decorated Peptides. Chemistry \& Biology 22(7):907-916.
19. Sardar D \& Schmidt EW (2016) Combinatorial biosynthesis of RiPPs: docking with marine life. Curr Opin Chem Biol 31:15-21.
20. Duan G \& Walther D (2015) The roles of post-translational modifications in the context of protein interaction networks. PLoS Comput Biol 11(2):e1004049.
21. Prabakaran S, Lippens G, Steen H, \& Gunawardena J (2012) Post-translational modification: nature's escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 4(6):565-583.
22. Ivry SL, et al. (2018) Global substrate specificity profiling of post-translational modifying enzymes. Protein Sci 27(3):584-594.
23. Kontaxi C, Piccardo P, \& Gill AC (2017) Lysine-Directed Post-translational Modifications of Tau Protein in Alzheimer's Disease and Related Tauopathies. Front Mol Biosci 4:56.
24. Dai C \& Gu W (2010) p53 post-translational modification: deregulated in tumorigenesis. Trends in Molecular Medicine 16(11):528-536.
25. ElizabethJ. Goldsmith RA, Xiaoshan Min, Tianjun Zhou, John M. Humphreys (2007) Substrate and docking interactions in Serine/Threonine Protein Kinases. Chemical Reviews 107:5065-5081.
26. Endicott JA, Noble ME, \& Johnson LN (2012) The structural basis for control of eukaryotic protein kinases. Annu Rev Biochem 81:587-613.
27. Garai A, et al. (2012) Specificity of linear motifs that bind to a common mitogenactivated protein kinase docking groove. Sci Signal 5(245):ra74.
28. John A. McIntosh CRR, Vinayak Agarwal, Satish K. Nair, Grzegorz W. Bulaj, Eric W. Schmidt (2010) Circular logic: nonribosomal peptide-like macrocyclization with a ribosomal peptide catalyst. Journal of American Chemical Society 132(44):15499-15501.
29. Donia MS, Ravel J, \& Schmidt EW (2008) A global assembly line for cyanobactins. Nat Chem Biol 4(6):341-343.
30. McIntosh JA, Donia MS, \& Schmidt EW (2010) Insights into heterocyclization from two highly similar enzymes. J Am Chem Soc 132(12):4089-4091.
31. Li C, Zhang F, \& Kelly WL (2011) Heterologous production of thiostrepton A and biosynthetic engineering of thiostrepton analogs. Mol Biosyst 7(1):82-90.
32. Pan SJ \& Link AJ (2011) Sequence diversity in the lasso peptide framework: discovery of functional microcin J 25 variants with multiple amino acid substitutions. J Am Chem Soc 133(13):5016-5023.
33. Arnison PG, et al. (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30(1):108-160.
34. Zhang Y, Chen M, Bruner SD, \& Ding Y (2018) Heterologous Production of Microbial Ribosomally Synthesized and Post-translationally Modified Peptides. Front Microbiol 9:1801.
35. Ortega MA \& van der Donk WA (2016) New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products. Cell Chem Biol 23(1):31-44.
36. Zhao N, Pan YX, Cheng Z, \& Liu HG (2016) Lasso peptide, a highly stable structure and designable multifunctional backbone. Amino Acids 48(6):1347-1356.
37. Yan KP, et al. (2012) Dissecting the Maturation Steps of the Lasso Peptide Microcin J25 in vitro. Chembiochem 13(7):1046-1052.
38. Hegemann JD, et al. (2014) Rational Improvement of the Affinity and Selectivity of Integrin Binding of Grafted Lasso Peptides. Journal of Medicinal Chemistry 57(13):5829-5834.
39. Knappe TA, et al. (2011) Introducing Lasso Peptides as Molecular Scaffolds for Drug Design: Engineering of an Integrin Antagonist. Angewandte Chemie-International Edition 50(37):8714-8717.
40. Oman TJ \& van der Donk WA (2010) Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol 6(1):9-18.
41. Just-Baringo X, Albericio F, \& Alvarez M (2014) Thiopeptide antibiotics: retrospective and recent advances. Mar Drugs 12(1):317-351.
42. Bennallack PR, et al. (2016) Reconstitution and Minimization of a Micrococcin Biosynthetic Pathway in Bacillus subtilis. Journal of Bacteriology 198(18):2431-2438.
43. Bennallack PR \& Griffitts JS (2017) Elucidating and engineering thiopeptide biosynthesis. World J Microbiol Biotechnol 33(6):119.
44. Zheng Q, Fang H, \& Liu W (2017) Post-translational modifications involved in the biosynthesis of thiopeptide antibiotics. Org Biomol Chem 15(16):3376-3390.
45. Philip R. Bennallack SRB, Michael J. Heder, Richard A. Robison, Joel S. Griffitts (2014) Characterization of a Novel Plasmid-Borne Thiopeptide Gene Cluster in Staphylococcus epidermidis Strain 115. Journal of Bacteriology:4344-4350.
46. Bewley KD, et al. (2016) Capture of micrococcin biosynthetic intermediates reveals Cterminal processing as an obligatory step for in vivo maturation. Proc Natl Acad Sci US A 113(44):12450-12455.
47. Melby JO, Nard NJ, \& Mitchell DA (2011) Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates. Curr Opin Chem Biol 15(3):369378.
48. Cox CL, Doroghazi JR, \& Mitchell DA (2015) The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles. BMC Genomics 16:778.
49. Ruffner DE, Schmidt EW, \& Heemstra JR (2014) Assessing the Combinatorial Potential of the RiPP Cyanobactin tru Pathway. ACS Synthetic Biology 4(4):482-492.
50. Truman AW (2016) Cyclisation mechanisms in the biosynthesis of ribosomally synthesised and post-translationally modified peptides. Beilstein J Org Chem 12:12501268.
51. Dunbar KL, et al. (2014) Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis. Nat Chem Biol 10(10):823-829.
52. Dunbar KL, Melby JO, \& Mitchell DA (2012) YcaO domains use ATP to activate amide backbones during peptide cyclodehydrations. Nat Chem Biol 8(6):569-575.
53. Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, \& Mitchell DA (2017) YcaODependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev 117(8):5389-5456.
54. Burkhart BJ, Hudson GA, Dunbar KL, \& Mitchell DA (2015) A prevalent peptidebinding domain guides ribosomal natural product biosynthesis. Nature Chemical Biology 11(8):564-570.
55. Deane CD, et al. (2016) In Vitro Biosynthesis and Substrate Tolerance of the Plantazolicin Family of Natural Products. ACS Chem Biol 11(8):2232-2243.
56. Melby JO, Li X, \& Mitchell DA (2014) Orchestration of enzymatic processing by thiazole/oxazole-modified microcin dehydrogenases. Biochemistry 53(2):413-422.
57. Czekster CM, Ge Y, \& Naismith JH (2016) Mechanisms of cyanobactin biosynthesis. Curr Opin Chem Biol 35:80-88.
58. McIntosh JA \& Schmidt EW (2010) Marine molecular machines: heterocyclization in cyanobactin biosynthesis. Chembiochem 11(10):1413-1421.
59. Neil L. Kelleher CLH, and Christopher T. Walsh (1999) Posttranslational Heterocyclization of Cysteine and Serine Residues in Antibiotic Microcin B17: Distributivity and Directionality. Biochemistry:15623-15630.
60. Ranabir Sinha Roy PJB, and Christopher T. Walsh (1998) Mutational Analysis of Posttranslational Heterocycle Biosynthesis in the Gyrase inhibitor Microcin B17:

Distance Dependence from propetide and tolerance for substitution in a GSCG cyclizable sequence. Biochemistry 37(12):4125-4136.
61. Shkundina I, Serebryakova M, \& Severinov K (2014) The C-terminal part of microcin B is crucial for DNA gyrase inhibition and antibiotic uptake by sensitive cells. J Bacteriol 196(9):1759-1767.
62. Molloy EM, et al. (2015) Identification of the minimal cytolytic unit for streptolysin S and an expansion of the toxin family. BMC Microbiol 15:141.
63. Molloy EM, Cotter PD, Hill C, Mitchell DA, \& Ross RP (2011) Streptolysin S-like virulence factors: the continuing sagA. Nat Rev Microbiol 9(9):670-681.
64. Melby JO, Dunbar KL, Trinh NQ, \& Mitchell DA (2012) Selectivity, directionality, and promiscuity in peptide processing from a Bacillus sp. Al Hakam cyclodehydratase. J Am Chem Soc 134(11):5309-5316.
65. Eric W. Schmidt JTN, David A. Rasko, Sebastian Sudek, Jonathan A. Eisen, Margo G. Haygood, and Jacques Ravel (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissooclinum patella. PNAS 102(20):7315-7320.
66. Koehnke J, et al. (2014) The structural biology of patellamide biosynthesis. Curr Opin Struct Biol 29:112-121.
67. Hudson GA, Zhang Z, Tietz JI, Mitchell DA, \& van der Donk WA (2015) In Vitro Biosynthesis of the Core Scaffold of the Thiopeptide Thiomuracin. J Am Chem Soc 137(51):16012-16015.
68. Zhang Z, et al. (2016) Biosynthetic Timing and Substrate Specificity for the Thiopeptide Thiomuracin. J Am Chem Soc 138(48):15511-15514.
69. Huo L, Rachid S, Stadler M, Wenzel SC, \& Muller R (2012) Synthetic biotechnology to study and engineer ribosomal bottromycin biosynthesis. Chem Biol 19(10):1278-1287.
70. Goto Y, Ito Y, Kato Y, Tsunoda S, \& Suga H (2014) One-pot synthesis of azolinecontaining peptides in a cell-free translation system integrated with a posttranslational cyclodehydratase. Chem Biol 21(6):766-774.
71. Ducasse R, et al. (2012) Sequence Determinants Governing the Topology and Biological Activity of a Lasso Peptide, Microcin J25. Chembiochem 13(3):371-380.
72. Assrir N, et al. (2016) Initial Molecular Recognition Steps of McjA Precursor during Microcin J25 Lasso Peptide Maturation. Chembiochem 17(19):1851-1858.
73. Pavlova O, Mukhopadhyay J, Sineva E, Ebright RH, \& Severinov K (2008) Systematic structure-activity analysis of microcin J25. Journal of Biological Chemistry 283(37):25589-25595.
74. Pan SJ \& Link AJ (2011) Sequence Diversity in the Lasso Peptide Framework:

Discovery of Functional Microcin J25 Variants with Multiple Amino Acid Substitutions. Journal of the American Chemical Society 133(13):5016-5023.
75. Mukai A, et al. (2009) Nocardithiocin, a novel thiopeptide antibiotic, produced by pathogenic Nocardia pseudobrasiliensis IFM 0757. J Antibiot (Tokyo) 62(11):613-619.
76. Bowers AA, Acker MG, Koglin A, \& Walsh CT (2010) Manipulation of thiocillin variants by prepeptide gene replacement: structure, conformation, and activity of heterocycle substitution mutants. J Am Chem Soc 132(21):7519-7527.
77. Weiying Liu YX, Min Ma, Shuzhen Wang, Nan Liu and Yijun Chen (2013) Multiple Oxidative Routes towards the Maturation of Nosiheptide. Chem Bio Chem.
78. Elshahawi SI, Shaaban KA, Kharel MK, \& Thorson JS (2015) A comprehensive review of glycosylated bacterial natural products. Chem Soc Rev 44(21):7591-7697.
79. Dunbar KL, Tietz JI, Cox CL, Burkhart BJ, \& Mitchell DA (2015) Identification of an Auxiliary Leader Peptide-Binding Protein Required for Azoline Formation in Ribosomal Natural Products. J Am Chem Soc 137(24):7672-7677.
80. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40.
81. Pettersen EF, et al. (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605-1612.
82. Shaun W. Lee DAM, Andrew L. Markley, Mary E. Hensler, David Gonzalez, Aaron Wohlrab, Pieter C. Dorrestein, Victor Nizet, Jack E. Dixon (2008) Discovery of a widely distributed toxin biosynthetic gene cluster. PNAS.
83. Koehnke J, et al. (2013) The cyanobactin heterocyclase enzyme: a processive adenylase that operates with a defined order of reaction. Angew Chem Int Ed Engl 52(52):1399113996.

SUPPLEMENTARY INFORMATION

CHAPTER 2: Vector sequences

Parent Vectors

Plasmid features:

Multiple Cloning Site
ColE1 ori
LacZ ORF
KanR ORF
RhaR ORF
RhaS ORF
RhaBAD promoter
P15A ori
TetR ORG
Tet promoter
CmR ORF
pJG744
GAATTCccaCTCGAGccaGGTACCaccTCTAGAcccGTCGACaccAAGCTTccaCTGCAGccaGAGCTCg gctgctaacaaagcccgaaaggaagctgagttggctgctgccaccgCTGCtggttcgctcataagtaaaa aacggcacctggtgccgtttttttgtctgaaacaagctgagcaataactagcataaccccttggggcctc taaacgggtcttgaggggttttttgctgaaaggaggaactatatccggattggcgaatgggacgcgccct gtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccct agcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctcta aatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagg gtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgtt ctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgattta taagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaatt ttaacaaaatattaacgcttacaatttaggtggcacttttcggggaaatgtgcgcggaacccctatttgt ttatttttctaaatacattcaaatatgtatccgctcatgaattaattcTTAGAAAAACTCATCGAGCATC AAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATG AAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCG TCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATGA GTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGC CATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAG ACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACT GCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGG

GGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCAT AAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGT TTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACAT TATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTAGAGCAAGA CGTTTCCCGTTGAATATGGCTCATaacaccccttgtattactgtttatgtaagcagacagttttattgtt catgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaagga tcttcTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGG TGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGAT ACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACA TACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGG ACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAG CTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCC GAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTC CAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTT GTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAaacgccagcaacgcggcctttttacggttcctggcc ttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccg cctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagc ggaagagcgcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcaatggtgcactc tcagtacaatctgctctgatgccgcatagttaagccagtatacactccgctatcgctacgtgactgggtc atggctgcgccccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccg cttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaacg cgcgaggcagctgcggtaaagctcatcagcgtggtcgtgaagcgattcacagatgtctgcctgttcatcc gcgtccagctcgttgagtttctccagaagcgttaatgtctggcttctgataaagcgggccatgttaaggg cggttttttcctgtttggtcactgatgcctccgtgtaagggggatttctgttcatgggggtaatgatacc gatgaaacgagagaggatgctcacgatacgggttactgatgatgaacatgcccggttactggaacgttgt gagggtaaacaactggcggtatggatgcggcgggaccagagaaaaatcactcagggtcaatgccagcgct tcgttaatacagatgtaggtgttccacagggtagccagcagcatcctgcgatgcagatccg

pJG747

GAATTCccaCTCGAGccaGGTACCacaggaaacagctATGACCATGATTACGGATTCACTGGCCGTCGTT TTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCG CCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGA ATGGCGCTTTGCCTGGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGATCTTCCTGAG GCCGATACTGTCGTCGTCCCCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATCTACACCAACGTGA CCTATCCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAATCCGACGGGTTGTTACTCGCTCACATT TAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGAATTATTTTTGATGGCGTTAACTCGGCGTTT CATCTGTGGTGCAACGGGCGCTGGGTCGGTTACGGCCAGGACAGTCGTTTGCCGTCTGAATTTGACCTGA GCGCATTTTTACGCGCCGGAGAAAACCGCCTCGCGGTGATGGTGCTGCGCTGGAGTGACGGCAGTTATCT GGAAGATCAGGATATGTGGCGGATGAGCGGCATTTTCCGTGACGTCTCGTTGCTGCATAAACCGACTACA CAAATCAGCGATTTCCATGTTGCCACTCGCTTTAATGATGATTTCAGCCGCGCTGTACTGGAGGCTGAAG TTCAGATGTGCGGCGAGTTGCGTGACTACCTACGGGTAACAGTTTCTTTATGGCAGGGTGAAACGCAGGT CGCCAGCGGCACCGCGCCTTTCGGCGGTGAAATTATCGATGAGCGTGGTGGTTATGCCGATCGCGTCACA CTACGTCTGAACGTCGAAAACCCGAAACTGTGGAGCGCCGAAATCCCGAATCTCTATCGTGCGGTGGTTG AACTGCACACCGCCGACGGCACGCTGATTGAAGCAGAAGCCTGCGATGTCGGTTTCCGCGAGGTGCGGAT TGAAAATGGTCTGCTGCTGCTGAACGGCAAGCCGTTGCTGATTCGAGGCGTTAACCGTCACGAGCATCAT CCTCTGCATGGTCAGGTCATGGATGAGCAGACGATGGTGCAGGATATCCTGCTGATGAAGCAGAACAACT TTAACGCCGTGCGCTGTTCGCATTATCCGAACCATCCGCTGTGGTACACGCTGTGCGACCGCTACGGCCT

GTATGTGGTGGATGAAGCCAATATTGAAACCCACGGCATGGTGCCAATGAATCGTCTGACCGATGATCCG CGCTGGCTACCGGCGATGAGCGAACGCGTAACGCGAATGGTGCAGCGCGATCGTAATCACCCGAGTGTGA TCATCTGGTCGCTGGGGAATGAATCAGGCCACGGCGCTAATCACGACGCGCTGTATCGCTGGATCAAATC TGTCGATCCTTCCCGCCCGGTGCAGTATGAAGGCGGCGGAGCCGACACCACGGCCACCGATATTATTTGC CCGATGTACGCGCGCGTGGATGAAGACCAGCCCTTCCCGGCTGTGCCGAAATGGTCCATCAAAAAATGGC TTTCGCTACCTGGAGAGACGCGCCCGCTGATCCTTTGCGAATACGCCCACGCGATGGGTAACAGTCTTGG CGGTTTCGCTAAATACTGGCAGGCGTTTCGTCAGTATCCCCGTTTACAGGGCGGCTTCGTCTGGGACTGG GTGGATCAGTCGCTGATTAAATATGATGAAAACGGCAACCCGTGGTCGGCTTACGGCGGTGATTTTGGCG ATACGCCGAACGATCGCCAGTTCTGTATGAACGGTCTGGTCTTTGCCGACCGCACGCCGCATCCAGCGCT GACGGAAGCAAAACACCAGCAGCAGTTTTTCCAGTTCCGTTTATCCGGGCAAACCATCGAAGTGACCAGC GAATACCTGTTCCGTCATAGCGATAACGAGCTCCTGCACTGGATGGTGGCGCTGGATGGTAAGCCGCTGG CAAGCGGTGAAGTGCCTCTGGATGTCGCTCCACAAGGTAAACAGTTGATTGAACTGCCTGAACTACCGCA GCCGGAGAGCGCCGGGCAACTCTGGCTCACAGTACGCGTAGTGCAACCGAACGCGACCGCATGGTCAGAA GCCGGGCACATCAGCGCCTGGCAGCAGTGGCGTCTGGCGGAAAACCTCAGTGTGACGCTCCCCGCCGCGT CCCACGCCATCCCGCATCTGACCACCAGCGAAATGGATTTTTGCATCGAGCTGGGTAATAAGCGTTGGCA ATTTAACCGCCAGTCAGGCTTTCTTTCACAGATGTGGATTGGCGATAAAAAACAACTGCTGACGCCGCTG CGCGATCAGTTCACCCGTGCACCGCTGGATAACGACATTGGCGTAAGTGAAGCGACCCGCATTGACCCTA ACGCCTGGGTCGAACGCTGGAAGGCGGCGGGCCATTACCAGGCCGAAGCAGCGTTGTTGCAGTGCACGGC AGATACACTTGCTGATGCGGTGCTGATTACGACCGCTCACGCGTGGCAGCATCAGGGGAAAACCTTATTT ATCAGCCGGAAAACCTACCGGATTGATGGTAGTGGTCAAATGGCGATTACCGTTGATGTTGAAGTGGCGA GCGATACACCGCATCCGGCGCGGATTGGCCTGAACTGCCAGCTGGCGCAGGTAGCAGAGCGGGTAAACTG GCTCGGATTAGGGCCGCAAGAAAACTATCCCGACCGCCTTACTGCCGCCTGTTTTGACCGCTGGGATCTG CCATTGTCAGACATGTATACCCCGTACGTCTTCCCGAGCGAAAACGGTCTGCGCTGCGGGACGCGCGAAT TGAATTATGGCCCACACCAGTGGCGCGGCGACTTCCAGTTCAACATCAGCCGCTACAGTCAACAGCAACT GATGGAAACCAGCCATCGCCATCTGCTGCACGCGGAAGAAGGCACATGGCTGAATATCGACGGTTTCCAT ATGGGGATTGGTGGCGACGACTCCTGGAGCCCGTCAGTATCGGCGGAATTCCAGCTGAGCGCCGGTCGCT ACCATTACCAGTTGGTCTGGTGTCAAAAATAAtaataaccgggcaggccatgtctgccgtcgacaccaag cttccactgcagccagagctcggctgctaacaaagcccgaaaggaagctgagttggctgctgccaccgct gctggttcgctcataagtaaaaaacggcacctggtgccgtttttttgtctgaaacaagctgagcaataac tagcataaccccttggggcctctaaacgggtcttgaggggttttttgctgaaaggaggaactatatccgg attggcgaatgggacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtga ccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgc cggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctc gaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgcc ctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctat ctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatt taacaaaaatttaacgcgaattttaacaaaatattaacgcttacaatttaggtggcacttttcggggaaa tgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaattaattc TTAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTT TGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGT ATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTT ATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATGCATTTCTTTC CAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCA TTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGA ATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAAT ACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAAT GCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATT GGCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATT

GTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAAT TTAATCGCGGCCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATaacaccccttgtattactgtttat gtaagcagacagttttattgttcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcaga ccccgtagaaaagatcaaaggatcttcTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACA AAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAA CTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAA GAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGAT AAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGG GGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCT ATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACA GGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACC TCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAaacgccagcaacgc ggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgat tctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgca gcgagtcagtgagcgaggaagcggaagagcgcctgatgcggtattttctccttacgcatctgtgcggtat ttcacaccgcaatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagtatacactcc gctatcgctacgtgactgggtcatggctgcgccccgacacccgccaacacccgctgacgcgccetgacgg gcttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggt tttcaccgtcatcaccgaaacgcgcgaggcagctgcggtaaagctcatcagcgtggtcgtgaagcgattc acagatgtctgcctgttcatccgcgtccagctcgttgagtttctccagaagcgttaatgtctggcttctg ataaagcgggccatgttaagggcggttttttcctgtttggtcactgatgcctccgtgtaagggggatttc tgttcatgggggtaatgataccgatgaaacgagagaggatgctcacgatacgggttactgatgatgaaca tgcccggttactggaacgttgtgagggtaaacaactggcggtatggatgcggcgggaccagagaaaaatc actcagggtcaatgccagcgcttcgttaatacagatgtaggtgttccacagggtagccagcagcatcctg cgatgcagatccg

pJG780

gaattcccactcgagcatcgtcggcatcggcatggcgaaTTAATCTTTCTGCGAATTGAGATGACGCCAC TGGCTGGGCGTCATCCCGGTTTCCCGGGTAAACACCACCGAAAAATAGTTACTATCTTCAAAGCCACATT CGGTCGAAATATCACTGATTAACAGGCGGCTATGCTGGAGAAGATATTGCGCATGACACACTCTGACCTG TCGCAGATATTGATTGATGGTCATTCCAGTCTGCTGGCGAAATTGCTGACGCAAAACGCGCTCACTGCAC GATGCCTCATCACAAAATTTATCCAGCGCAAAGGGACTTTTCAGGCTAGCCGCCAGCCGGGTAATCAGCT TATCCAGCAACGTTTCGCTGGATGTTGGCGGCAACGAATCACTGGTGTAACGATGGCGATTCAGCAACAT CACCAACTGCCCGAACAGCAACTCAGCCATTTCGTTAGCAAACGGCACATGCTGACTACTTTCATGCTCA AGCTGACCGATAACCTGCCGCGCCTGCGCCATCCCCATGCTACCTAAGCGCCAGTGTGGTTGCCCTGCGC TGGCGTTAAATCCCGGAATCGCCCCCTGCCAGTCAAGATTCAGCTTCAGACGCTCCGGGCAATAAATAAT ATTCTGCAAAACCAGATCGTTAACGGAAGCGTAGGAGTGTTTATCGTCAGCATGAATGTAAAAGAGATCG CCACGGGTAATGCGATAAGGGCGATCGTTGAGTACATGCAGGCCATTACCGCGCCAGACAATCACCAGCT CACAAAAATCATGTGTATGTTCAGCAAAGACATCTTGCGGATAACGGTCAGCCACAGCGACTGCCTGCTG GTCGCTGGCAAAAAAATCATCTTTGAGAAGTTTTAACTGATGCGCCACcgtggctacctcggccagagaa cgaagttgattattcgcaatatggcgtacaaatacgttgagaagattcgcgTTATTGCAGAAAGCCATCC CGTCCCTGGCGAATATCACGCGGTGACCAGTTAAACTCTCGGCGAAAAAGCGTCGAAAAGTGGTTACTGT CGCTGAATCCACAGCGATAGGCGATGTCAGTAACGCTGGCCTCGCTGTGGCGTAGCAGATGTCGGGCTTT CATCAGTCGCAGGCGGTTCAGGTATCGCTGAGGCGTCAGTCCCGTTTGCTGCTTAAGCTGCCGATGTAGC GTACGCAGTGAAAGAGAAAATTGATCCGCCACGGCATCCCAATTCACCTCATCGGCAAAATGGTCCTCCA GCCAGGCCAGAAGCAAGTTGAGACGTGATGCGCTGTTTTCCAGGTTCTCCTGCAAACTGCTTTTACGCAG CAAGAGCAGTAATTGCATAAACAAGATCTCGCGACTGGCGGTCGAGGGTAAATCATTTTCCCCTTCCTGC

TGTTCCATCTGTGCAACCAGCTGTCGCACCTGCTGCAATACGCTGTGGTTAACGCGCCAGTGAGACGGAT ACTGCCCATCCAGCTCTTGTGGCAGCAACTGATTCAGCCCGGCGAGAAACTGAAATCGATCCGGCGAGCG ATACAGCACATTGGTCAGACACAGATTATCGGTATGTTCATACAGATGCCGATCATGATCGCGTACGAAA CAGACCGTGCCACCGGTGATGGTATAGGGCTGCCCATTAAACACATGAATACCCGTGCCATGTTCGACAA TCACAATTTCATGAAAATCATGATGATGTTCAGGAAAATCCGCCTGCGGGAGCCGGGGTTCTATCGCCAC GGACGCGTTACCAGACGGAAAAAAATCCACACTATGTAATACGGTCATactggcctcctgatgtcgtcaa cacggcgaaatagtaatcacgaggtcaggttcttaccttaaattttcgacggaaaaccacgtaaaaaacg tcgatttttcaagatacagcgtgaattttcaggaaatgcggtgagcatcacatCACCACAATTCAGCAAA TTGTGAACATCATCACGTTCATCTTTCCCTGGTTGCCAATGGCCCATTTTCCTGTCAGTAACGAGAAGGT CGCGAATTCAGGCGCTTTTTAGACTGGTCGTAatgaaattcagcGGTACCaccGTCGACaccAAGCTTcc aCTGCAGccaGAGCTCggctgctaacaaagcccgaaaggaagctgagttggctgctgccaccgctgctgg ttcgctcataagtaaaaaacggcacctggtgccgtttttttgtctgaaacaagctgagcaataactagca taaccccttggggcctctaaacgggtcttgaggggttttttgctgaaaggaggaactatatccggattgg cgaatgggacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgct acacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggct ttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccc caaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttg acgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcgg tctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaaca aaaatttaacgcgaattttaacaaaatattaacgcttacaatttaggtggcacttttcggggaaatgtgc gcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaattaattcTTAGA AAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAA AAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGG TCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAA GTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATGCATTTCTTTCCAGAC TTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGT GATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCA ACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTG GAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTG ATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAA CGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGC ACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAAT CGCGGCCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATaacaccccttgtattactgtttatgtaag cagacagttttattgttcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccg tagaaaagatcaaaggatcttcTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAA ACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGC TTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACT CTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTC GTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGT TCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAG AAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGA GCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGA CTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAaacgccagcaacgcggcct ttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgt ggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgag tcagtgagcgaggaagcggaagagcgcctgatgcggtattttctccttacgcatctgtgcggtatttcac accgcaatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagtatacactccgctat cgctacgtgactgggtcatggctgcgccccgacacccgccaacacccgctgacgcgccctgacgggcttg
tctgctcccggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttca ccgtcatcaccgaaacgcgcgaggcagctgcggtaaagctcatcagcgtggtcgtgaagcgattcacaga tgtctgcctgttcatccgcgtccagctcgttgagtttctccagaagcgttaatgtctggcttctgataaa gcgggccatgttaagggcggttttttcctgtttggtcactgatgcctccgtgtaagggggatttctgttc atgggggtaatgataccgatgaaacgagagaggatgctcacgatacgggttactgatgatgaacatgccc ggttactggaacgttgtgagggtaaacaactggcggtatggatgcggcgggaccagagaaaaatcactca gggtcaatgccagcgcttcgttaatacagatgtaggtgttccacagggtagccagcagcatcctgcgatg cagatccg

pJG795

gaattcccactcgagacgtcTTAAGACCCACTTTCACATTTAAGTTGTTTTTCTAATCCGCATATGATCA ATTCAAGGCCGAATAAGAAGGCTGGCTCTGCACCTTGGTGATCAAATAATTCGATAGCTTGTCGTAATAA TGGCGGCATACTATCAGTAGTAGGTGTTTCCCTTTCTTCTTTAGCGACTTGATGCTCTTGATCTTCCAAT ACGCAACCTAAAGTAAAATGCCCCACAGCGCTGAGTGCATATAATGCATTCTCTAGTGAAAAACCTTGTT GGCATAAAAAGGCTAATTGATTTTCGAGAGTTTCATACTGTTTTTCTGTAGGCCGTGTACCTAAATGTAC TTTTGCTCCATCGCGATGACTTAGTAAAGCACATCTAAAACTTTTAGCGTTATTACGTAAAAAATCTTGC CAGCTTTCCCCTTCTAAAGGGCAAAAGTGAGTATGGTGCCTATCTAACATCTCAATGGCTAAGGCGTCGA GCAAAGCCCGCTTATTTTTTACATGCCAATACAATGTAGGCTGCTCTACACCTAGCTTCTGGGCGAGTTT ACGGGTTGTTAAACCTTCGATTCCGACCTCATTAAGCAGCTCTAATGCGCTGTTAATCACTTTACTTTTA TCTAATCTAGACATcattaattcctaatttttGTTGACACTCTATCGTTGATAGAGTTATTTTACCACTC CCTATCAGTGATAGAGAAaaGGTACCgcgTCTAGAcccGTCGACgccAAGCTTccgCTGCAGcccGAGCT cgcttcctggtgtccctgttgataccgggaagccctgggccaacttttggcgaaaatgagacgttgatcg gcacgtaagaggttccaactttcaccataatgaaataagatcactaccgggcgtattttttgagttatcg agattttcaggagctaaggaagctaaaATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCC AATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCA GCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCAC ATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATAT GGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGA ATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTG GCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCA GTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATAC GCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTC GGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAAtt七ttttaaggca gttattggtgcccttaaacgcctggtgtaaaaacccgcttcggcgggtttttttatgctgattaagcatt ggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaag gatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactga gcgtcagaccccttaataagatgatcttcTTGAGATCGTTTTGGTCTGCGCGTAATCTCTTGCTCTGAAA ACGAAAAAACCGCCTTGCAGGGCGGTTTTTCGAAGGTTCTCTGAGCTACCAACTCTTTGAACCGAGGTAA CTGGCTTGGAGGAGCGCAGTCACCAAAACTTGTCCTTTCAGTTTAGCCTTAACCGGCGCATGACTTCAAG ACTAACTCCTCTAAATCAATTACCAGTGGCTGCTGCCAGTGGTGCTTTTGCATGTCTTTCCGGGTTGGAC TCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGACTGAACGGGGGGTTCGTGCATACAGTCCAGCT TGGAGCGAACTGCCTACCCGGAACTGAGTGTCAGGCGTGGAATGAGACAAACGCGGCCATAACAGCGGAA TGACACCGGTAAACCGAAAGGCAGGAACAGGAGAGCGCACGAGGGAGCCGCCAGGGGGAAACGCCTGGTA TCTTTATAGTCCTGTCGGGTTTCGCCACCACTGATTTGAGCGTCAGATTTCGTGATGCTTGTCAGGGGGG CGGAGCCTATGGAAAaacggctttgccgcggccctctcacttccctgttaagtatcttcctggcatcttc caggaaatctccgccccgttcgtaagccatttccgctcgccgcagtcgaacgaccgagcgtagcgagtca gtgagcgaggaagcggaatatatcctgtatcacatattctgctgacgcaccggtgcagccttttttctcc
tgccacatgaagcacttcactgacaccctcatcagtgccaacatagtaagccagtatacactccgctagc gctgaggtcagcttgcccacgtagacc

pJG745

GAATTCccaCTCGAGccaGGTACCaccTCTAGAcccGTCGACgccAAGCTTccgCTGCAGcccGAGCTCg cttcctggtgtccctgttgataccgggaagccctgggccaacttttggcgaaaatgagacgttgatcggc acgtaagaggttccaactttcaccataatgaaataagatcactaccgggcgtattttttgagttatcgag attttcaggagctaaggaagctaaaATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAA TGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGC TGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACAT TCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGG GATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAAT ACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGC CTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGT TTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGC AAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGG CAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAAtttttttaaggcagt tattggtgcccttaaacgcctggtgtaaaaacccgcttcggcgggtttttttatgctgattaagcattgg taactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaagga tctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagc gtcagaccccttaataagatgatcttcTTGAGATCGTTTTGGTCTGCGCGTAATCTCTTGCTCTGAAAAC GAAAAAACCGCCTTGCAGGGCGGTTTTTCGAAGGTTCTCTGAGCTACCAACTCTTTGAACCGAGGTAACT GGCTTGGAGGAGCGCAGTCACCAAAACTTGTCCTTTCAGTTTAGCCTTAACCGGCGCATGACTTCAAGAC TAACTCCTCTAAATCAATTACCAGTGGCTGCTGCCAGTGGTGCTTTTGCATGTCTTTCCGGGTTGGACTC AAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGACTGAACGGGGGGTTCGTGCATACAGTCCAGCTTG GAGCGAACTGCCTACCCGGAACTGAGTGTCAGGCGTGGAATGAGACAAACGCGGCCATAACAGCGGAATG ACACCGGTAAACCGAAAGGCAGGAACAGGAGAGCGCACGAGGGAGCCGCCAGGGGGAAACGCCTGGTATC TTTATAGTCCTGTCGGGTTTCGCCACCACTGATTTGAGCGTCAGATTTCGTGATGCTTGTCAGGGGGGCG GAGCCTATGGAAAaacggctttgccgcggccctctcacttccctgttaagtatcttcctggcatcttcca ggaaatctccgccccgttcgtaagccatttccgctcgccgcagtcgaacgaccgagcgtagcgagtcagt gagcgaggaagcggaatatatcctgtatcacatattctgctgacgcaccggtgcagccttttttctcctg ccacatgaagcacttcactgacaccctcatcagtgccaacatagtaagccagtatacactccgctagcgc tgaggtcagcttgcccacgtagacc

Inserts

PlacT5 (LacIq)(XhoI/SalI)

CTCGAGccggtgcctaatgagtgagctaacttacattaattgcgttgcgcTCActgcccgctttccagtc gggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattggg cgccagggtggtttttcttttcaccagtgagacgggcaacagctgattgcccttcaccgcctggccctga gagagttgcagcaagcggtccacgctggtttgccccagcaggcgaaaatcctgtttgatggtggttaacg gcgggatataacatgagctgtcttcggtatcgtcgtatcccactaccgagatgtccgcaccaacgcgcag cccggactcggtaatggcgcgcattgcgcccagcgccatctgatcgttggcaaccagcatcgcagtggga acgatgccctcattcagcatttgcatggtttgttgaaaaccggacatggcactccagtcgccttcccgtt ccgctatcggctgaatttgattgcgagtgagatatttatgccagccagccagacgcagacgcgccgagac agaacttaatgggcccgctaacagcgcgatttgctggtgacccaatgcgaccagatgctccacgcccagt cgcgtaccgtcttcatgggagaaaataatactgttgatgggtgtctggtcagagacatcaagaaataacg
ccggaacattagtgcaggcagcttccacagcaatggcatcctggtcatccagcggatagttaatgatcag cccactgacgcgttgcgcgagaagattgtgcaccgccgctttacaggcttcgacgccgcttcgttctacc atcgacaccaccacgctggcacccagttgatcggcgcgagatttaatcgccgcgacaatttgcgacggcg cgtgcagggccagactggaggtggcaacgccaatcagcaacgactgtttgcccgccagttgttgtgccac gcggttgggaatgtaattcagctccgccatcgccgcttccactttttcccgcgttttcgcagaaacgtgg ctggcctggttcaccacgcgggaaacggtctgataagagacaccggcatactctgcgacatcgtataacg ttactggtttCACattcaccaccctgaattgactctcttccgggcgctATCATGccataccgcgaaaggt tTTGCACcattcgatggtgtccgggaTCC

PlacT5 (LacIWT) (XhoI/SalI)

CTCGAGccggtgcctaatgagtgagctaacttacattaattgcgttgcgcTCActgcccgctttccagtc gggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattggg cgccagggtggtttttcttttcaccagtgagacgggcaacagctgattgcccttcaccgcctggccctga gagagttgcagcaagcggtccacgctggtttgccccagcaggcgaaaatcctgtttgatggtggttaacg gcgggatataacatgagctgtcttcggtatcgtcgtatcccactaccgagatgtccgcaccaacgcgcag cccggactcggtaatggcgcgcattgcgcccagcgccatctgatcgttggcaaccagcatcgcagtggga acgatgccctcattcagcatttgcatggtttgttgaaaaccggacatggcactccagtcgccttcccgtt ccgctatcggctgaatttgattgcgagtgagatatttatgccagccagccagacgcagacgcgccgagac agaacttaatgggcccgctaacagcgcgatttgctggtgacccaatgcgaccagatgctccacgcccagt cgcgtaccgtcttcatgggagaaaataatactgttgatgggtgtctggtcagagacatcaagaaataacg ccggaacattagtgcaggcagcttccacagcaatggcatcctggtcatccagcggatagttaatgatcag cccactgacgcgttgcgcgagaagattgtgcaccgccgctttacaggcttcgacgccgcttcgttctacc atcgacaccaccacgctggcacccagttgatcggcgcgagatttaatcgccgcgacaatttgcgacggcg cgtgcagggccagactggaggtggcaacgccaatcagcaacgactgtttgcccgccagttgttgtgccac gcggttgggaatgtaattcagctccgccatcgccgcttccactttttcccgcgttttcgcagaaacgtgg ctggcctggttcaccacgcgggaaacggtctgataagagacaccggcatactctgcgacatcgtataacg ttactggtttcACattcaccaccctgaattgactctcttccgggcgctATCATGccataccgcgaaaggt tTTGCGCcattcgatggtgtccgggaTCC

Ptet (XhoI/SalI)

ctcgagACGTCTTAAGACCCACTTTCACATTTAAGTTGTTTTTCTAATCCGCATATGATCAATTCAAGGC CGAATAAGAAGGCTGGCTCTGCACCTTGGTGATCAAATAATTCGATAGCTTGTCGTAATAATGGCGGCAT ACTATCAGTAGTAGGTGTTTCCCTTTCTTCTTTAGCGACTTGATGCTCTTGATCTTCCAATACGCAACCT AAAGTAAAATGCCCCACAGCGCTGAGTGCATATAATGCATTCTCTAGTGAAAAACCTTGTTGGCATAAAA AGGCTAATTGATTTTCGAGAGTTTCATACTGTTTTTCTGTAGGCCGTGTACCTAAATGTACTTTTGCTCC ATCGCGATGACTTAGTAAAGCACATCTAAAACTTTTAGCGTTATTACGTAAAAAATCTTGCCAGCTTTCC CСTTCTAAAGGGCAAAAGTGAGTATGGTGCCTATCTAACATCTCAATGGCTAAGGCGTCGAGCAAAGCCC GCTTATTTTTTACATGCCAATACAATGTAGGCTGCTCTACACCTAGCTTCTGGGCGAGTTTACGGGTTGT TAAACCTTCGATTCCGACCTCATTAAGCAGCTCTAATGCGCTGTTAATCACTTTACTTTTATCTAATCTA GACATCATTAATTCCTAATTTTTGTTGACACTCTATCGTTGATAGAGTTATTTTACCACTCCCTATCAGT GATAGAGAAAAggtacc

PrhaBAD (XhoI/SalI)

ctcgagCATCGTCGGCATCGGCATGGCGAAttaATCTTTCTGCGAATTGAGATGACGCCACTGGCTGGGC GTCATCCCGGTTTCCCGGGTAAACACCACCGAAAAATAGTTACTATCTTCAAAGCCACATTCGGTCGAAA TATCACTGATTAACAGGCGGCTATGCTGGAGAAGATATTGCGCATGACACACTCTGACCTGTCGCAGATA TTGATTGATGGTCATTCCAGTCTGCTGGCGAAATTGCTGACGCAAAACGCGCTCACTGCACGATGCCTCA

TCACAAAATTTATCCAGCGCAAAGGGACTTTTCAGGCTAGCCGCCAGCCGGGTAATCAGCTTATCCAGCA ACGTTTCGCTGGATGTTGGCGGCAACGAATCACTGGTGTAACGATGGCGATTCAGCAACATCACCAACTG CCCGAACAGCAACTCAGCCATTTCGTTAGCAAACGGCACATGCTGACTACTTTCATGCTCAAGCTGACCG ATAACCTGCCGCGCCTGCGCCATCCCCATGCTACCTAAGCGCCAGTGTGGTTGCCCTGCGCTGGCGTTAA ATCCCGGAATCGCCCCCTGCCAGTCAAGATTCAGCTTCAGACGCTCCGGGCAATAAATAATATTCTGCAA AACCAGATCGTTAACGGAAGCGTAGGAGTGTTTATCGTCAGCATGAATGTAAAAGAGATCGCCACGGGTA ATGCGATAAGGGCGATCGTTGAGTACATGCAGGCCATTACCGCGCCAGACAATCACCAGCTCACAAAAAT CATGTGTATGTTCAGCAAAGACATCTTGCGGATAACGGTCAGCCACAGCGACTGCCTGCTGGTCGCTGGC AAAAAAATCATCTTTGAGAAGTTTTAACTGATGCGCcacCGTGGCTACCTCGGCCAGAGAACGAAGTTGA TTATTCGCAATATGGCGTACAAATACGTTGAGAAGATTCGCGttaTTGCAGAAAGCCATCCCGTCCCTGG CGAATATCACGCGGTGACCAGTTAAACTCTCGGCGAAAAAGCGTCGAAAAGTGGTTACTGTCGCTGAATC CACAGCGATAGGCGATGTCAGTAACGCTGGCCTCGCTGTGGCGTAGCAGATGTCGGGCTTTCATCAGTCG CAGGCGGTTCAGGTATCGCTGAGGCGTCAGTCCCGTTTGCTGCTTAAGCTGCCGATGTAGCGTACGCAGT GAAAGAGAAAATTGATCCGCCACGGCATCCCAATTCACCTCATCGGCAAAATGGTCCTCCAGCCAGGCCA GAAGCAAGTTGAGACGTGATGCGCTGTTTTCCAGGTTCTCCTGCAAACTGCTTTTACGCAGCAAGAGCAG TAATTGCATAAACAAGATCTCGCGACTGGCGGTCGAGGGTAAATCATTTTCCCCTTCCTGCTGTTCCATC TGTGCAACCAGCTGTCGCACCTGCTGCAATACGCTGTGGTTAACGCGCCAGTGAGACGGATACTGCCCAT CCAGCTCTTGTGGCAGCAACTGATTCAGCCCGGCGAGAAACTGAAATCGATCCGGCGAGCGATACAGCAC ATTGGTCAGACACAGATTATCGGTATGTTCATACAGATGCCGATCATGATCGCGTACGAAACAGACCGTG CCACCGGTGATGGTATAGGGCTGCCCATTAAACACATGAATACCCGTGCCATGTTCGACAATCACAATTT CATGAAAATCATGATGATGTTCAGGAAAATCCGCCTGCGGGAGCCGGGGTTCTATCGCCACGGACGCGTT ACCAGACGGAAAAAAATCCACACTATGTAATACGGTcatACTGGCCTCCTGATGTCGTCAACACGGCGAA ATAGTAATCACGAGGTCAGGTTCTTACCTTAAATTTTCGACGGAAAACCACGTAAAAAACGTCGATTTTT CAAGATACAGCGTGAATTTTCAGGAAATGCGGTGAGCATCACATCACCACAATTCAGCAAATTGTGAACA TCATCACGTTCATCTTTCCCTGGTTGCCAATGGCCCATTTTCCTGTCAGTAACGAGAAGGTCGCGAATTC AGGCGCTTTTTAGACTGGTCGTaATGAAATTCAGCggtacc

ParaBAD (XhoI/KpnI)

ctcgagGCTACTCCGTCAAGCCGTCAATTGTCTGATTCGTTACCAAttaTGACAACTTGACGGCTACATC ATTCACTTTTTCTTCACAACCGGCACGAAACTCGCTCGGGCTGGCCCCGGTGCATTTTTTAAATACTCGC GAGAAATAGAGTTGATCGTCAAAACCAACATTGCGACCGACGGTGGCGATAGGCATCCGGGTAGTGCTCA AAAGCAGCTTCGCCTGACTAATGCGTTGGTCCTCGCGCCAGCTTAAGACGCTAATCCCTAACTGCTGGCG GAAAAGATGTGACAGACGCGACGGCGACAAGCAAACATGCTGTGCGACGCTGGCGATATCAAAATTGCTG TCTGCCAGGTGATCGCTGATGTACTGACAAGCCTCGCGTACCCGATTATCCATCGGTGGATGGAGCGACT CGTTAATCGCTTCCATGCGCCGCAGTAACAATTGCTCAAGCAGATTTATCGCCAGCAGCTCCGAATAGCG CCCTTCCCCTTGCCCGGCGTTAATGATTTGCCCAAACAGGTCGCTGAAATGCGGCTGGTGCGCTTCATCC GGGCGAAAGAAACCCGTATTGGCAAATATTGACGGCCAGTTAAGCCATTCATGCCAGTAGGCGCGCGGAC GAAAGTAAACCCACTGGTGATACCATTCGCGAGCCTCCGGATGACGACCGTAGTGATGAATCTCTCCTGG CGGGAACAGCAAAATATCACCCGGTCGGCAGACAAATTCTCGTCCCTGATTTTTCACCACCCCCTGACCG CGAATGGTGAGATTGAGAATATAACCTTTCATTCCCAGCGGTCGGTCGATAAAAAAATCGAGATAACCGT TGGCCTCAATCGGCGTTAAACCCGCCACCAGATGGGCGTTAAACGAGTATCCCGGCAGCAGGGGATCATT TTGCGCTTCAGCcatACTTTTCATACTCCCACCATTCAGAGAAGAAACCAATTGTCCATATTGCATCAGA CATTGCCGTCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCCAACCGGTAACCCCGCTTATTAAAAGCA TTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAA AGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCG GATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATaCCCGTTTTTggtacc

msfGFP (KpnI/SalI)

ggtaccGGAGGTCACATATGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCT GGACGGCGACGTAAACGGCCACAAGTTCAGCGTGCGCGGCGAGGGCGAGGGCGATGCCACCAACGGCAAG CTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGA CCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCAT GCCCGAAGGCTACGTCCAGGAGCGCACCATCTCCTTCAAGGACGACGGCACCTACAAGACCCGCGCCGAG GTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCA ACATCCTGGGGCACAAGCTGGAGTACAACTTCAACAGCCACAACGTCTATATCACGGCCGACAAGCAGAA GAACGGCATCAAGGCGAACTTCAAGATCCGCCACAACGTCGAGGACGGCAGCGTGCAGCTCGCCGACCAC TACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGT CCAAGCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGG GATCACTCTCGGCATGGACGAGCTGTACAAGTAAgtcgac

McjB \& McjC (KpnI/SalI)

ggtaccTACAGGAGGGAGTGTGCAAAATGATCCGTTACTGCTTAACCAGTTATAGAGAGGATCTTGTTAT CCTGGATATAATTAATGATAGTTTCAGCATAGTGCCTGACGCAGGTAGCTTGCTAAAAGAAAGAGATAAA TTGCTTAAAGAATTCCCACAACTATCTTACTTTTTTGACAGTGAATATCATATTGGAAGTGTTTCTCGTA ATAGTGACACTTCTTTTCTTGAAGAACGCTGGTTTCTACCAGAACCTGACAAAACATTATATAAGTGTTC TCTATTTAAACGATTTATATTATTACTCAAAGTCTTTTACTATAGCTGGAATATTGAAAAAAAAGGGATG GCATGGATTTTCATAAGTAATAAAAAAGAGAATAGGCTATACTCCTTGAATGAAGAGCATCTTATCCGGA AAGAAATTAGTAATCTTTCCATTATCTTTCATCTTAATATTTTTAAATCTGACTGTCTTACCTATTCATA CGCACTAAAAAGAATTCTTAATTCCAGAAATATTGATGCTCATCTTGTTATTGGTGTAAGGACACAACCT TTTTATAGCCACTCTTGGGTGGAGGTTGGGGGACAAGTTATCAATGATGCTCCCAATATGCGGGATAAAT TATCTGTTATTGCAGAGATATAGTTATGGAAATATTTAATGTCAAGTTAAATGATACTTCAATTAGAATT ATTTTCTGTAAAACGCTTTCTGCCTTCCGGACAGAAAATACCATCGTTATGCTCAAAGGAAAAGCAGTTT CAAATGGCAAACCTGTATCCACAGAGGAGATTGCCAGAGTAGTGGAAGAAAAAGGTGTTTCAGAAGTAAT AGAAAATTTAGATGGTGTTTTCTGTATCCTAATTTATCATTTTAATGATCTCCTTATAGGGAAAAGCATT CAATCAGGCCCCGCTCTATTTTATTGTAAAAAGAATATGGATATTTTTGTTTCGGATAAAATTTCTGATA TCAAATTTTTGAATCCAGATATGACATTCAGTCTAAATATAACAATGGCAGAACATTATCTGTCAGGAAA TCGAATAGCAACCCAGGAATCACTAATCACTGGCATTTACAAAGTAAATAATGGTGAGTTTATAAAATTT AATAATCAGTTGAAACCTGTGCTACTTCGTGATGAGTTTAGTATTACCAAAAAGAACAATTCAACTATCG ACAGTATCATTGATAATATTGAGATGATGCGGGATAATAGAAAAATAGCCCTATTATTTTCCGGAGGATT GGATTCTGCATTAATTTTTCACACACTTAAAGAATCAGGTAACAAATTCTGCGCTTATCATTTTTTTTCT GATGAATCTGATGACAGTGAAAAGTATTTTGCTAAGGAATACTGTTCAAAATATGGAGTTGATTTTATAT CTGTTAATAAAAACATCAACTTTAATGAAAAACTTTATTTCAATTTAAATCCTAATAGTCCGGACGAAAT CCCTTTGATATTTGAACAGACAGATGAAGAAGGTGAAGGTCAGCCCCCCATAGACGATGATTTATTATAT CTATGTGGTCACGGTGGAGATCATATTTTCGGACAAAATCCTTCAGAACTTTTTGGCATTGATGCATATC GAAGTCATGGCTTGATGTTTATGCATAAAAAAATAGTAGAATTTTCCAATCTCAAGGGAAAGAGATATAA AGATATCATATTTTCAAATATTTCCGCATTCATTAATACATCCAACGGATGTTCTCCAGCAAAGCAAGAG CACGTATCAGATATGAAACTTGCCTCTGCTCAGTTTTTTGCAACTGATTATACAGGAAAAATTAATAAAC TAACTCCATTCCTGCATAAAAATATTATCCAGCATTATGCTGGCTTACCAGTTTTTAGTCTATTTAACCA GCACTTTGATCGTTATCCCGTTCGTTATGAAGCGTTTCAACGATTTGGTTCAGATATTTTCTGGAAAAAA ACCAAACGGTCATCTTCACAGCTAATATTCAGAATTCTATCCGGTAAAAAGGATGAACTAGTGAATACAA TAAAACAGTCAGGATTAATTGAAATATTAGGCATTAACCATATTGAATTGGAAAGCATTTTGTATGAAAA TACGACTACACGTCTGACAATGGAACTACCATATATACTTAACTTATACCGTCTGGCAAAATTCATTCAA CTTCAATCCATTGATTATAAAGGTTAAgtcgac

McjA (KpnI/SalI)

GGTACCaaataaggaggctaaaaATGATTAAGCATTTTCATTTTAATAAACTGTCTTCTGGTAAAAAAAA TAATGTTCCATCTCCTGCAAAGGGGGTTATACAAATAAAAAAATCAGCATCGCAACTCACAAAAGGTGGT GCAGGACATGTGCCTGAGTATTTTGTGGGGATTGGTACACCTATATCTTTCTATGGCTGAgtcgac

McjA with BamHI modification (KpnI/SalI)
GGTACCaaataaggaggctaaaaATGATTAAGCATTTTCATTTTAATAAACTGTCTTCTGGTAAAAAAAA TAATGTTCCATCTCCTGCAAAGGGGGTTATACAAATAAAAAAATCAGCATCGCAACTCACAAAAGGTGGA TCCGGACATGTGCCTGAGTATTTTGTGGGGATTGGTACACCTATATCTTTCTATGGCTGAgtcgac

Supplementary Table 2. Plasmid Table

Plasmid Name	Parent Plasmid	Insert
pJG756	pJG747	PlacT5(lacIq)
pJG753	pJG747	PlacT5(LacIWT)
pJG808	pJG747	Ptet
pJG751	pJG747	PrhaBAD
pJG749	pJG747	ParaBAD
pJG804	pJG744	Ptet, msfGFP
pJG783	pJG744	PrhaBAD, msfGFP
pJG805	pJG744	PlacT5(lacIQ), msfGFP
pJG809	pJG744	ParaBAD, msfGFP
pJG810	pJG744	PlacT5(lacIWT), msfGFP
pJG798	pJG780	McjA
pJG803	pJG780	McjA with BamHI
pJG797	pJG795	McjB \& McjC

Supplementary Table 3. Strain Table

Strain name	Background	Plasmid (s)
C893	DH5 α	pJG797, pJG798
C894	DH5 α	pJG795, pJG798
C895	DH5 α	pJG797, pJG745
C896	MDS	pJ42 Meta Δ recA
C897	MDS $^{\text {TM42 Meta } \Delta \text { recA }}$	pJG797, pJG798
C901	MDS $^{\text {TM }} 42$ Meta Δ recA	pJG797, pJG803
C902	MDS ${ }^{\text {TM }} 42$ Meta Δ recA	pJG795, pJG780

CHAPTER 3: Vector sequences

Parent vectors

Plasmid Features :
LacI ORF
Lac/T5 promoter
Multiple cloning site
T7 terminator
AmpR ORF
KanR ORF
CmR ORF
pCDF ori
ColE1 ori

pJG743

tggcgaatgggacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgacc gctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccg gctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcga ccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccct ttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatct cggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgattta acaaaaatttaacgcgaattttaacaaaatattaacgcttacaatttaggtggcacttttcggggaaatg tgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaattaattcTT AGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTG AAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTAT CGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTAT CAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATGCATTTCTTTCCA GACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATT CGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAAT GCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATAC CTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGC TTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGG CAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGT CGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTT AATCGCGGCCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATaacaccccttgtattactgtttatgt aagcagacagttttattgttcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagacc ccgtagaaaagatcaaaggatcttcTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAA AAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACT

GGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGA ACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAA GTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGG GGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTAT GAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGG AGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTC TGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAaacgccagcaacgcgg cctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattc tgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagc gagtcagtgagcgaggaagcggaagagcgcctgatgcggtattttctccttacgcatctgtgcggtattt cacaccgcaatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagtatacactccgc tatcgctacgtgactgggtcatggctgcgccccgacacccgccaacacccgctgacgcgccctgacgggc ttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttt tcaccgtcatcaccgaaacgcgcgaggcagctgcggtaaagctcatcagcgtggtcgtgaagcgattcac agatgtctgcctgttcatccgcgtccagctcgttgagtttctccagaagcgttaatgtctggcttctgat aaagcgggccatgttaagggcggttttttcctgtttggtcactgatgcctccgtgtaagggggatttctg ttcatgggggtaatgataccgatgaaacgagagaggatgctcacgatacgggttactgatgatgaacatg cccggttactggaacgttgtgagggtaaacaactggcggtatggatgcggcgggaccagagaaaaatcac tcagggtcaatgccagcgcttcgttaatacagatgtaggtgttccacagggtagccagcagcatcctgcg atgcagatccggaacataatggtgcagggcgctgacttccgcgtttccagactttacgaaacacggaaac cgaagaccattcatgttgttgctcaggtcgcagacgttttgcagcagcagtcgcttcacgttcgctcgcg tatcggtgattcattctgctaaccagtaaggcaaccccgccagcctagccgggtcctcaacgacaggagc acgatcatgcgcacccgtggggccgccatgccggcgataatggcctgcttctcgccgaaacgtttggtgg cgggaccagtgacgaaggcttgagcgagggcgtgcaagattccgaataccgcaagcgacaggccgatcat cgtcgcgctccagcgaaagcggtcctcgccgaaaatgacccagagcgctgccggcacctgtcctacgagt tgcatgataaagaagacagtcataagtgcggcgacgatagtcatgccccgcgcccaccggaaggagctga ctgggttgaaggctctcaagggcatcggtcgagatcccggtgcctaatgagtgagctaacttacattaat tgcgttgcgcTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAA CGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAAC AGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCA GGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCC CACTACCGAGATGTCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATC TGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAAC CGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTTATG CCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGA CCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGG GTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATC CTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCT TTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGAG ATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAA CGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCC ACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGA CACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACattcaccaccctgaattgactctcttc cgggcgctatcatgccataccgcgaaaggttttgcgccattcgatggtgtccgggatctcgacgctctcc cttatgcgactcctgcattaggaagcagcccagtagtaggttgaggccgttgagcaccgccgccgcaagg aatggtgcatgcaaggagatggcgcccaacagtcccccggccacggggcctgccaccatacccacgccga aacaagcgctcatgagcccgaagtggcgagcccgatcttccccatcggtgatgtcggcgatataggcgcc agcaaccgcacctgtggcgccggtgagatctcgatcccgcgaaataaTTGTGAGCGGATAACAAttacga
gcttcatgcacagtgaaaTCATGAAAAATTTATTTGCTTTGTGAGCGGATAACAATTATAATAtgtggAA TTGTGAGCGCTCACAATTccacaacggttctaGGTACCaccTCTAGAcccGTCGACaccAAGCTTccaCT GCAGccaGAGCTCggctgctaacaaagcccgaaaggaagctgagttggctgctgccaccgctgctggttc gctcataagtaaaaaacggcacctggtgccgtttttttgtctgaaacaagctgagcaataaCTAGCATAA CCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGctgaaaggaggaactatatccggat

pED022

ctcgaggatcgatcccggtgcctaatgagtgagctaacttacattaattgcgttgcgcTCACTGCCCGCT TTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGC GTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCT GGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTTGATGGT GGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATGTCCGCACCA ACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCG CAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCC TTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGC GCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCA CGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAG AAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTA ATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTTCGACGCCGCTTC GTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGAGATTTAATCGCCGCGACAATTTG CGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTTTGCCCGCCAGTTGT TGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAG AAACGTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATC GTATAACGTTACTGGTTTCACattcaccaccctgaattgactctcttccgggcgctatcatgccataccg cgaaaggttttgcgccattcgatggtgtccgggatctcgacgctctcccttatgcgactcctgcattagg aagcagcccagtagtaggttgaggccgttgagcaccgccgccgcaaggaatggtgcatgcaaggagatgg cgcccaacagtcccccggccacggggcctgccaccatacccacgccgaaacaagcgctcatgagcccgaa gtggcgagcccgatcttccccatcggtgatgtcggcgatataggcgccagcaaccgcacctgtggcgccg gtgagatctcgatcccgcgaaatAATTGTGAGCGGATAACAATTacgagcttcatgcacagtgaaaTCAT GAAAAATTTATTTGCTTTGTGAGCGGATAACAATTATAATAtgtggAATTGTGAGCGCTCACAATTccac aacggtTCTAGAaataattttgtttaactttaagaaggagatataCATATGGGATCCTGAGAGCTCggaa atgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaata accctgataaatgcttcaataatattgaaaaggaagagtaTGAGTATTCAACATTTCCGTGTCGCCCTT ATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATG CTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAG TTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCC CGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACT CACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTG CACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACG ACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACT TACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGC TCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCA TTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAAC TATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAActgtcagac caagtttactcgtaaaaacccgcttcggcgggtttttttatgctagggcggttcagtagaaaaGATCAAA GGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTTTTGCCCTGTAAACGAAAAAACCACCTGGGGAG

Abstract

GTGGTTTGATCGAAGGTTAAGTCAGTTGGGGAACTGCTTAACCGTGGTAACTGGCTTTCGCAGAGCACAG CAACCAAATCTGTCCTTCCAGTGTAGCCGGACTTTGGCGCACACTTCAAGAGCAACCGCGTGTTTAGCTA AACAAATCCTCTGCGAACTCCCAGTTACCAATGGCTGCTGCCAGTGGCGTTTTACCGTGCTTTTCCGGGT TGGACTCAAGTGAACAGTTACCGGATAAGGCGCAGCAGTCGGGCTGAACGGGGAGTTCTTGCTTACAGCC CAGCTTGGAGCGAACGACCTACACCGAGCCGAGATACCAGTGTGTGAGCTATGAGAAAGCGCCACACTTC CCGTAAGGGAGAAAGGCGGAACAGGTATCCGGTAAACGGCAGGGTCGGAACAGGAGAGCGCAAGAGGGAG CGACCCGCCGGAAACGGTGGGGATCTTTAAGTCCTGTCGGGTTTCGCCCGTACTGTCAGATTCATGGTTG AGCCTCACGGCTCCCACAGATGCACCGGAAAAGCGTCTGTTTATGTGAACTCTGGCAGGAGGGCGGAGCC TATGGAAAAACGCCACCGGCGCGGCCCTGCTGTTTTGCCTCACATGTTAGTCCCCTGCTTATCCACGGAA TCTGTGGGTAACTTTGTATGTGTCCGCAGCGCccgccgcagtctcacgcccggagcgtagcgaccgagtg aa

Inserts

TclI (KpnI/XbaI) insert

ggtaccGGAGGTCACATATGTACCTGCTGTTCAAGAAAGACACCTTTTATATCAAGACCCACAACGAGGG TATTCTGTTCAAAAACAACTTTACCAACCTGGAAGTGAAGACCCATAAAAGCTACTATGTTTTCGAGAAC CTGATCGAATACCTGAACGGCAGCTATACCGAGAACCAGATCATCGAAAACATCAAGAACAAGAAAGTGG CGCTGTTCTGCAAAAACATCATTAACGTTCTGAAGGAGAAAAACTTTATCTACGCGAGCGAAAACCGTCT GGATAACCTGAGCGAGCTGGAAATCAAGATTCTGTATCTGAACAGCAAGAACATCCAACTGAGCAAAGAC GCGTTCCTGAACAACAACAAGATCGATATTAAAACCTACAACCTGATGGAGAACGAGTTCGCGAACACCA TGCTGAAGGAGTACTATTTTAGCCCGAGCGAAACCGCGAACATCAAGATTAGCCTGGGTAAATTTGAGAG CGACATCGGCTACTATATCATTCCGGATGGTGAATACCTGATTGTGGGCAAAAGCAAGAAACAGCACACC CACACCGTTAGCCTGAGCACCTATGAGATCCCGCTGCACGCGTGGCTGATCTGCCTGAACATTCTGCTGA GCGAACTGTTCCTGTACTGCACCAGCATTTATAGCGAGGACAAGTTCGATGAAAACTACTACAAGTTCAA CGTGCAAACCTTTGAGGGTGACTTCTTTAAGAAAGAAAACAAATAAtctaga

TclJ (XbaI/SalI) insert

tctagaGGAGGTCACATATGGAAATCTTCGAAAGCCCGGAGTTTAACATCATTCGTTACCTGAGCAACAG CTATATTTTCAAGAGCACCAGCAAAGAACCGGACTTTCTGAACAGCATCAAAGAGCGTATTCTGCTGAAT ACCAACGATATCATTTACAAGAAAAACATCCCGGAACGTAACATTAGCTTCCTGAGCCGTATCGAGAACA GCATTGGTAACTTTATCTGCAACCAGATTAGCGAATACGACTACATCATCTACATCTACAACCACAAGAC CAACAAGATCAAGAAAGTGAACTACTTCATCAGCCCGCACTACTATAAGAAACTGCCGAACGACACCACC AACTGCTTCAACATCATTATCAACGAGCTGAAGAACAGCAAAAGCCACAACTTTCGTAGCCGTAACATTG ATAGCATCTACAACCAGCTGGACAAATATTTCCTGGATAAGAACCTGGGTATCTGCAACATGCTGCTGGA CAACTACGATGGCCCGTTTCCGATTAGCGTTGCGATGCTGCCGCTGGACAACGGTAAAGAGGAACCGGGT GTGGGCCGTACCCGTAAGATCCAACGTAGCCGTGCGGTTGCGCTGCTGGAAGCGTACGAGCGTTATAGCG GTCTGGAACCGCGTGGCAAGAAAACCATCAACCACACCGAGGATCTGAAGAGCAAGAAAGTGAACATGAA CAGCCTGATTCTGCACAACAACCCGTTCCTGATCAGCCACGGCATTAAAAACAGCAACTTTACCTACAAC GACCTGCTGGATAACGAAATCAGCTGGGTTAAGTGCCTGAACCTGAACACCTTCCAGACCCTGCTGATTC CGGAGCAATATGCGTACTATGGTATTAACATCAGCAACCACAAGGAAAAAGCGATTAACATCGCGTACGA GATCAGCAACGGTTGCAGCGTGGGCAACAACTATCTGGAAGTGGTTTACTATGGCCTGATGGAAGTTATC GAGCGTGACAGCTTCCTGTGCAGCTGGTACTTTAACACCCCGAAGGATAAAATTAGCCTGAAAAACGCGA GCACCAGCATCAAGAACCTGATTCAGCAATTCACCAGCTACTATAACGACTATAAACTGGAACTGTTCTA CCTGTATAACGAGTTTAACATCCCGGTGGTTCTGGCGACCGTGACCCTGAAGGAAAGCAGCACCAAGAAA ATGAACTTTATGTGCGCGGCGGCGGCGGACATTAACATCGAAGATGCGATCGAGAAAAGCATTCACGAGA TCGGTGGCATTCTGTTCGGTCTGAACAAGAAATTTATCGATCGTTACCACGAGCTGGAAGCGATTCGTAA

AAACAACCTGGACGTGAAGACCATGGAAGATCACACCCTGGTTTATGGCCTGCCGGAGCACCGTACCTAC ATCCAGCAAAAGATGAACTACGAAAACATCTACGACTATGATAAGGAGCTGACCCCGAAAATCTTCTACA AAGAGGTGCAGAAGCTGATCAAGAAAATTAGCACCACCAAGGACATTCTGCTGGTTGATCAAACCCCGCT GATCAGCAAGAAAATTGACCTGAAAGTGGGTAAAATTATCGTTCCGGGCCTGCTGCCGATGACCTTTGGC AAATACAACATCCGTGTTAGCGAAAACCGTTACCACGAGCTGTGCCACTTCTATAGCAAGGACCTGATTA TCGATCTGAACCCGCACCCGTTTCCGTAAgtcgac

TclN (SalI/SacI) insert

gtcgacGGAGGTCACATATGGATATCAGCAAATTCCTGTACAACCTGCACTATAACCCGGGCGAGGTGGT TAGCGCGAGCTACACCATCGAGGACACCATTCAGCGTAACAGCGAAGGTTTTTACAAGGGCTATGGTATC GATTTCCTGAAACTGCAACAAAAGAGCCCGATCGTGAAAGTTATTCTGAAGAGCTACGGCGACATCTTCT TTAACCGTGTGGAAAACAAGAAAAAGCCGCTGATCTTCTGCCGTAAAATGACCCCGAGCGGTGGCGGTCT GTATCCGATCAACATTTTTATCTGCACCAACTTCAAGAACCGTATCGCGCTGTTCCAATTTGATTTCAAA CGTAACCTGCTGATCTTCATCAAGTACATCAACATCGAGATCAACAACGAATGCACCAAACTGTACCTGG TTCCGTGCTATACCCGTAACTACTTCAAGTACAAGGAGTTCAGCTATCGTCTGTGCCCGCTGGACACCGG CTACCTGATCAGCACCCTGCTGTATAACTTTAGCGTGGAGAACATCACCTTCAAGCTGAGCATTAAACTG AACAAGAACAGCGACATCACCGATGTTCTGAACGAAATCGGTTGCGAGGAAATTCCGTACAGCATCATTG AGCTGAACGAAAGCCTGAACCTGGACAACCTGAGCCTGGAGCACTACGATACCGAAAGCTATTTCTTTAA CCCGAACAAAGTGCGTAACCTGCTGGAGATCGACACCCTGATTCACCAGGAATACCACAAGGATATCAAC ATCAACTTCAATAACGAGAACAAGCTGTTCGAGAAGTTCGAAATCCAAAAACGTATTAGCCCGGGTGGTG AGTTCATCCAGAACAGCAAAGTGGAGCAAGAAAGCATTAACAAGTTTATCAGCCTGATTATGCAGTACAA AAACAAGAGCAACTTCCTGAGCGAATATATCCTGCTGAACCTGATTGACGTTCAAAACAAGCGTATCATT AACCTGAGCGCGAGCGAGTTTCTGAGCTACAAAAACAACGTGAGCATCGAATTTATTGATAAGCAGCTGA CCCGTCGTAACTTCAACCTGCTGGCGGTTCCGTACATCCTGTATGTGGGCGTTAACGAGGAAAAAATTAA GGAGAACTACAGCAACAACTACTTCAAAATCAGCCGTATCATCGCGGGCTTCTGGAGCGGTGTGGTTAGC ATTCTGAGCGCGCAGTGCGGTCTGAGCACCCACCCGATGATGAGCTACAACGCGCGTGAACTGGAGGAAT ACATCTTCAAGAACCGTTATAGCATTCTGAACCAAATCGTTATTGGCGGTAACATCACCACCAACCGTAT GGACTCCATGCTGATTCGTAGCGATCTGTAAAAGCTGCCCgagctc

His $_{6}$-TclI ($\mathrm{KpnI} / \mathrm{XbaI}$) insert

ggtaccGGAGGTCACATATGCATCATCACCATCACCATGGCGGAAGCTACCTGCTGTTCAAGAAAGACAC CTTTTATATCAAGACCCACAACGAGGGTATTCTGTTCAAAAACAACTTTACCAACCTGGAAGTGAAGACC CATAAAAGCTACTATGTTTTCGAGAACCTGATCGAATACCTGAACGGCAGCTATACCGAGAACCAGATCA TCGAAAACATCAAGAACAAGAAAGTGGCGCTGTTCTGCAAAAACATCATTAACGTTCTGAAGGAGAAAAA CTTTATCTACGCGAGCGAAAACCGTCTGGATAACCTGAGCGAGCTGGAAATCAAGATTCTGTATCTGAAC AGCAAGAACATCCAACTGAGCAAAGACGCGTTCCTGAACAACAACAAGATCGATATTAAAACCTACAACC TGATGGAGAACGAGTTCGCGAACACCATGCTGAAGGAGTACTATTTTAGCCCGAGCGAAACCGCGAACAT CAAGATTAGCCTGGGTAAATTTGAGAGCGACATCGGCTACTATATCATTCCGGATGGTGAATACCTGATT GTGGGCAAAAGCAAGAAACAGCACACCCACACCGTTAGCCTGAGCACCTATGAGATCCCGCTGCACGCGT GGCTGATCTGCCTGAACATTCTGCTGAGCGAACTGTTCCTGTACTGCACCAGCATTTATAGCGAGGACAA GTTCGATGAAAACTACTACAAGTTCAACGTGCAAACCTTTGAGGGTGACTTCTTTAAGAAAGAAAACAAA TAAtctaga

His $_{6}$-TclJ (XbaI/SalI) insert

tctagaGGAGGTCACATATGCATCATCACCATCACCATGGCGGAAGCGAAATCTTCGAAAGCCCGGAGTT TAACATCATTCGTTACCTGAGCAACAGCTATATTTTCAAGAGCACCAGCAAAGAACCGGACTTTCTGAAC AGCATCAAAGAGCGTATTCTGCTGAATACCAACGATATCATTTACAAGAAAAACATCCCGGAACGTAACA

TTAGCTTCCTGAGCCGTATCGAGAACAGCATTGGTAACTTTATCTGCAACCAGATTAGCGAATACGACTA CATCATCTACATCTACAACCACAAGACCAACAAGATCAAGAAAGTGAACTACTTCATCAGCCCGCACTAC TATAAGAAACTGCCGAACGACACCACCAACTGCTTCAACATCATTATCAACGAGCTGAAGAACAGCAAAA GCCACAACTTTCGTAGCCGTAACATTGATAGCATCTACAACCAGCTGGACAAATATTTCCTGGATAAGAA CCTGGGTATCTGCAACATGCTGCTGGACAACTACGATGGCCCGTTTCCGATTAGCGTTGCGATGCTGCCG CTGGACAACGGTAAAGAGGAACCGGGTGTGGGCCGTACCCGTAAGATCCAACGTAGCCGTGCGGTTGCGC TGCTGGAAGCGTACGAGCGTTATAGCGGTCTGGAACCGCGTGGCAAGAAAACCATCAACCACACCGAGGA TCTGAAGAGCAAGAAAGTGAACATGAACAGCCTGATTCTGCACAACAACCCGTTCCTGATCAGCCACGGC ATTAAAAACAGCAACTTTACCTACAACGACCTGCTGGATAACGAAATCAGCTGGGTTAAGTGCCTGAACC TGAACACCTTCCAGACCCTGCTGATTCCGGAGCAATATGCGTACTATGGTATTAACATCAGCAACCACAA GGAAAAAGCGATTAACATCGCGTACGAGATCAGCAACGGTTGCAGCGTGGGCAACAACTATCTGGAAGTG GTTTACTATGGCCTGATGGAAGTTATCGAGCGTGACAGCTTCCTGTGCAGCTGGTACTTTAACACCCCGA AGGATAAAATTAGCCTGAAAAACGCGAGCACCAGCATCAAGAACCTGATTCAGCAATTCACCAGCTACTA TAACGACTATAAACTGGAACTGTTCTACCTGTATAACGAGTTTAACATCCCGGTGGTTCTGGCGACCGTG ACCCTGAAGGAAAGCAGCACCAAGAAAATGAACTTTATGTGCGCGGCGGCGGCGGACATTAACATCGAAG ATGCGATCGAGAAAAGCATTCACGAGATCGGTGGCATTCTGTTCGGTCTGAACAAGAAATTTATCGATCG TTACCACGAGCTGGAAGCGATTCGTAAAAACAACCTGGACGTGAAGACCATGGAAGATCACACCCTGGTT TATGGCCTGCCGGAGCACCGTACCTACATCCAGCAAAAGATGAACTACGAAAACATCTACGACTATGATA AGGAGCTGACCCCGAAAATCTTCTACAAAGAGGTGCAGAAGCTGATCAAGAAAATTAGCACCACCAAGGA CATTCTGCTGGTTGATCAAACCCCGCTGATCAGCAAGAAAATTGACCTGAAAGTGGGTAAAATTATCGTT CCGGGCCTGCTGCCGATGACCTTTGGCAAATACAACATCCGTGTTAGCGAAAACCGTTACCACGAGCTGT GCCACTTCTATAGCAAGGACCTGATTATCGATCTGAACCCGCACCCGTTTCCGTAAgtcgac

GST-TclE (XbaI/SacI) insert

tctagaAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGTCCCCTATACTAGGTTATTGGAAAA TTAAGGGCCTTGTGCAACCCACTCGACTTCTTTTGGAATATCTTGAAGAAAAATATGAAGAGCATTTGTA TGAGCGCGATGAAGGTGATAAATGGCGAAACAAAAAGTTTGAATTGGGTTTGGAGTTTCCCAATCTTCCT TATTATATTGATGGTGATGTTAAATTAACACAGTCTATGGCCATCATACGTTATATAGCTGACAAGCACA ACATGTTGGGTGGTTGTCCAAAAGAGCGTGCAGAGATTTCAATGCTTGAAGGAGCGGTTTTGGATATTAG ATACGGTGTTTCGAGAATTGCATATAGTAAAGACTTTGAAACTCTCAAAGTTGATTTTCTTAGCAAGCTA CCTGAAATGCTGAAAATGTTCGAAGATCGTTTATGTCATAAAACATATTTAAATGGTGATCATGTAACCC ATCCTGACTTCATGTTGTATGACGCTCTTGATGTTGTTTTATACATGGACCCAATGTGCCTGGATGCGTT CCCAAAATTAGTTTGTTTTAAAAAACGTATTGAAGCTATCCCACAAATTGATAAGTACTTGAAATCCAGC AAGTATATAGCATGGCCTTTGCAGGGCTGGCAAGCCACGTTTGGTGGTGGCGACCATCCTCCAAAAGGAG GAGAAAACCTGTATTTTCAAGGCGGATCCGAGTTCCAGACCAACAACATCGAAGGTCTGGACGTGACCGA TCTGGAGTTTATTAGCGAGGAAGTTACCGAAAAGGACGAGAAAGAAATCATGGGTGCTTCTTGCACCACC TGCGTGTGCACCTGTAGCTGCTGCACCACCTAACTGCAGCCAgagctc

TclN-His ${ }_{6}$ (SalI/SacI) insert

gtcgacGGAGGTCACATATGGATATCAGCAAATTCCTGTACAACCTGCACTATAACCCGGGCGAGGTGGT TAGCGCGAGCTACACCATCGAGGACACCATTCAGCGTAACAGCGAAGGTTTTTACAAGGGCTATGGTATC GATTTCCTGAAACTGCAACAAAAGAGCCCGATCGTGAAAGTTATTCTGAAGAGCTACGGCGACATCTTCT TTAACCGTGTGGAAAACAAGAAAAAGCCGCTGATCTTCTGCCGTAAAATGACCCCGAGCGGTGGCGGTCT GTATCCGATCAACATTTTTATCTGCACCAACTTCAAGAACCGTATCGCGCTGTTCCAATTTGATTTCAAA CGTAACCTGCTGATCTTCATCAAGTACATCAACATCGAGATCAACAACGAATGCACCAAACTGTACCTGG TTCCGTGCTATACCCGTAACTACTTCAAGTACAAGGAGTTCAGCTATCGTCTGTGCCCGCTGGACACCGG CTACCTGATCAGCACCCTGCTGTATAACTTTAGCGTGGAGAACATCACCTTCAAGCTGAGCATTAAACTG

AACAAGAACAGCGACATCACCGATGTTCTGAACGAAATCGGTTGCGAGGAAATTCCGTACAGCATCATTG AGCTGAACGAAAGCCTGAACCTGGACAACCTGAGCCTGGAGCACTACGATACCGAAAGCTATTTCTTTAA CCCGAACAAAGTGCGTAACCTGCTGGAGATCGACACCCTGATTCACCAGGAATACCACAAGGATATCAAC ATCAACTTCAATAACGAGAACAAGCTGTTCGAGAAGTTCGAAATCCAAAAACGTATTAGCCCGGGTGGTG AGTTCATCCAGAACAGCAAAGTGGAGCAAGAAAGCATTAACAAGTTTATCAGCCTGATTATGCAGTACAA AAACAAGAGCAACTTCCTGAGCGAATATATCCTGCTGAACCTGATTGACGTTCAAAACAAGCGTATCATT AACCTGAGCGCGAGCGAGTTTCTGAGCTACAAAAACAACGTGAGCATCGAATTTATTGATAAGCAGCTGA CCCGTCGTAACTTCAACCTGCTGGCGGTTCCGTACATCCTGTATGTGGGCGTTAACGAGGAAAAAATTAA GGAGAACTACAGCAACAACTACTTCAAAATCAGCCGTATCATCGCGGGCTTCTGGAGCGGTGTGGTTAGC ATTCTGAGCGCGCAGTGCGGTCTGAGCACCCACCCGATGATGAGCTACAACGCGCGTGAACTGGAGGAAT ACATCTTCAAGAACCGTTATAGCATTCTGAACCAAATCGTTATTGGCGGTAACATCACCACCAACCGTAT GGACTCCATGCTGATTCGTAGCGATCTGAGCGGCGGACATCATCACCATCACCATTAACTGCAGCCCgag ctc

$\mathrm{His}_{6} \mathrm{TclII}_{\mathrm{NTD}}(\mathrm{KpnI} / \mathrm{XbaI})$ insert

ggtaccGGAGGTCACATATGCATCATCACCATCACCATGGCGGAAGCTACCTGCTGTTCAAGAAAGACAC CTTTTATATCAAGACCCACAACGAGGGTATTCTGTTCAAAAACAACTTTACCAACCTGGAAGTGAAGACC CATAAAAGCTACTATGTTTTCGAGAACCTGATCGAATACCTGAACGGCAGCTATACCGAGAACCAGATCA TCGAAAACATCAAGAACAAGAAAGTGGCGCTGTTCTGCAAAAACATCATTAACGTTCTGAAGGAGAAAAA CTTTATCTACGCGAGCGAAAACCGTCTGGATAACTAAtctaga

$\mathrm{His}_{6} \mathrm{TclII}_{\mathrm{Ctd}}(\mathrm{KpnI} / \mathrm{XbaI})$ insert

ggtaccGGAGGTCACATATGCATCATCACCATCACCATGGCGGAAGCGAAAACCGTCTGGATAACCTGAG CGAGCTGGAAATCAAGATTCTGTATCTGAACAGCAAGAACATCCAACTGAGCAAAGACGCGTTCCTGAAC AACAACAAGATCGATATTAAAACCTACAACCTGATGGAGAACGAGTTCGCGAACACCATGCTGAAGGAGT ACTATTTTAGCCCGAGCGAAACCGCGAACATCAAGATTAGCCTGGGTAAATTTGAGAGCGACATCGGCTA CTATATCATTCCGGATGGTGAATACCTGATTGTGGGCAAAAGCAAGAAACAGCACACCCACACCGTTAGC CTGAGCACCTATGAGATCCCGCTGCACGCGTGGCTGATCTGCCTGAACATTCTGCTGAGCGAACTGTTCC TGTACTGCACCAGCATTTATAGCGAGGACAAGTTCGATGAAAACTACTACAAGTTCAACGTGCAAACCTT TGAGGGTGACTTCTTTAAGAAAGAAAACAAATAAtctaga

TclJ ${ }_{\text {NTD } 1}$ (XbaI/SacI) insert

tctagaGGAGGTCACATATGGAAATCTTCGAAAGCCCGGAGTTTAACATCATTCGTTACCTGAGCAACAG CTATATTTTCAAGAGCACCAGCAAAGAACCGGACTTTCTGAACAGCATCAAAGAGCGTATTCTGCTGAAT ACCAACGATATCATTTACAAGAAAAACATCCCGGAACGTAACATTAGCTTCCTGAGCCGTATCGAGAACA GCATTGGTAACTTTATCTGCAACCAGATTAGCGAATACGACTACATCATCTACATCTACAACCACAAGAC CAACAAGATCAAGAAAGTGAACTACTTCATCAGCCCGCACTACTATAAGAAACTGCCGAACGACACCACC AACTGCTTCAACTAAgagctc

TclJ ${ }_{\mathrm{NTD} 2}$ (XbaI/SacI) insert

tctagaGGAGGTCACATATGGAAATCTTCGAAAGCCCGGAGTTTAACATCATTCGTTACCTGAGCAACAG СТАTATTTTCAAGAGCACCAGCAAAGAACCGGACTTTCTGAACAGCATCAAAGAGCGTATTCTGCTGAAT ACCAACGATATCATTTACAAGAAAAACATCCCGGAACGTAACATTAGCTTCCTGAGCCGTATCGAGAACA GCATTGGTAACTTTATCTGCAACCAGATTAGCGAATACGACTACATCATCTACATCTACAACCACAAGAC CAACAAGATCAAGAAAGTGAACTACTTCATCAGCCCGCACTACTATAAGAAATAAgagctc

GST-TclE ${ }_{\text {leader }}(\mathrm{XbaI} / \mathrm{SacI})$ insert

tctagaAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGTCCCCTATACTAGGTTATTGGAAAA TTAAGGGCCTTGTGCAACCCACTCGACTTCTTTTGGAATATCTTGAAGAAAAATATGAAGAGCATTTGTA TGAGCGCGATGAAGGTGATAAATGGCGAAACAAAAAGTTTGAATTGGGTTTGGAGTTTCCCAATCTTCCT TATTATATTGATGGTGATGTTAAATTAACACAGTCTATGGCCATCATACGTTATATAGCTGACAAGCACA ACATGTTGGGTGGTTGTCCAAAAGAGCGTGCAGAGATTTCAATGCTTGAAGGAGCGGTTTTGGATATTAG ATACGGTGTTTCGAGAATTGCATATAGTAAAGACTTTGAAACTCTCAAAGTTGATTTTCTTAGCAAGCTA CCTGAAATGCTGAAAATGTTCGAAGATCGTTTATGTCATAAAACATATTTAAATGGTGATCATGTAACCC ATCCTGACTTCATGTTGTATGACGCTCTTGATGTTGTTTTATACATGGACCCAATGTGCCTGGATGCGTT CCCAAAATTAGTTTGTTTTAAAAAACGTATTGAAGCTATCCCACAAATTGATAAGTACTTGAAATCCAGC AAGTATATAGCATGGCCTTTGCAGGGCTGGCAAGCCACGTTTGGTGGTGGCGACCATCCTCCAAAAGGAG GAGAAAACCTGTATTTTCAAGGCGGATCCGAGTTCCAGACCAACAACATCGAAGGTCTGGACGTGACCGA TCTGGAGTTTATTAGCGAGGAAGTTACCGAAAAGGACGAGAAAGAAATCATGGGTGCTTCTTgagctc

L501A2 vector sequence

Features:

LacI ORF

TAC promoter
Multiple cloning site
AmpR ORF
ColE1 ori

GST-TclE

gtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgta tccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtATGAGTATTCAA CATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGC TGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAG CGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTA TGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGA ATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATG CAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAG GAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGA ATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACT ATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTT GCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGC GTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACAC GACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAG CATTGGTAActgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaattta aaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttcca ctgagcgtcagaccccgtagaaaagatcaaaggatcttcTTGAGATCCTTTTTTTCTGCGCGTAATCTGC TGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTT TTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGG CCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCT

GCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGT CGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCT ACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGC AGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCG GGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAaa cgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcg ttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaa cgaccgagcgcagcgagtcagtgagcgaggaagcggaagtctagtccgacaccatcgaatggtgcaaaac ctttcgcggtatggcatgatagcgcccggaagagagtcaattcagggtggtgaatGTGAAACCAGTAACG TTATACGATGTCGCAGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCC ACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCGGAGCTGAATTACATTCCCAACCGCGT GGCACAACAACTGGCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCG CCGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGATGG TAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCT GATCATTAACTATCCGCTGGATGACCAGGATGCCATTGCTGTGGAAGCTGCCTGCACTAATGTTCCGGCG TTATTTCTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAGACGGTACGCGAC TGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAAGTTCTGT CTCGGCGCGTCTGCGTCTGGCTGGCTGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAA CGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTTC CCACTGCGATGCTGGTTGCCAACGATCAGATGGCGCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCT GCGCGTTGGTGCGGATATCTCAGTAGTGGGATACGACGATACCGAAGACAGCTCATGTTATATCCCGCCG TTAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTC AGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCC CAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGA CTGGAAAGCGGGCAGTGAgcgcaacgcaattaatgtaagttagctcactcattaggcacaattctcatgt ttgacagcttatcatcgactgcacggtgcaccaatgcttctggcgtcaggcagccatcggaagctgtggt atggctgtgcaggtcgtaaatcactgcataattcgtgtcgctcaaggcgcactcccgttctggataatgt tttttgcgccgacatcataacggttctggcaaatattctgaaatgagctgTTGACAATTAATCATCGGCT CGTATAATGtgtggaattgtgagcggataacaatttcacacaggaaactctagAAAGGAGGTGGAGGTCA TGTCCCCTATACTAGGTTATTGGAAAATTAAGGGCCTTGTGCAACCCACTCGACTTCTTTTGGAATATCT TGAAGAAAAATATGAAGAGCATTTGTATGAGCGCGATGAAGGTGATAAATGGCGAAACAAAAAGTTTGAA TTGGGTTTGGAGTTTCCCAATCTTCCTTATTATATTGATGGTGATGTTAAATTAACACAGTCTATGGCCA TCATACGTTATATAGCTGACAAGCACAACATGTTGGGTGGTTGTCCAAAAGAGCGTGCAGAGATTTCAAT GCTTGAAGGAGCGGTTTTGGATATTAGATACGGTGTTTCGAGAATTGCATATAGTAAAGACTTTGAAACT CTCAAAGTTGATTTTCTTAGCAAGCTACCTGAAATGCTGAAAATGTTCGAAGATCGTTTATGTCATAAAA CATATTTAAATGGTGATCATGTAACCCATCCTGACTTCATGTTGTATGACGCTCTTGATGTTGTTTTATA CATGGACCCAATGTGCCTGGATGCGTTCCCAAAATTAGTTTGTTTTAAAAAACGTATTGAAGCTATCCCA CAAATTGATAAGTACTTGAAATCCAGCAAGTATATAGCATGGCCTTTGCAGGGCTGGCAAGCCACGTTTG GTGGTGGCGACCATCCTCCAAAAGGAGGAGAAAACCTGTATTTTCAAGGCGGATCAGAATTCCAAACAAA CAATATCGAAGGTTTAGATGTCACTGATTTAGAATTTATCAGTGAAGAAGTTACTGAAAAAGACGAGAAA GAAATCATGGGTGCTTCTTGTACTACATGTGTTTGTACATGCAGTTGTTGTACAACTTAAggatccggct gacgcgtacaggaaacacagaaaaaagcccgcacctgacagtgcgggctttttttttcgaccaaaggtaa cgaggtaacaaccatgcgagtgttgaagtggcagaactgctgaacgcaggtctgggcggttctgataacg agtaatcgttaatccgcaaataacgtaaaaacccgcttcggcgggtttttttatggggggagtttaggga aagagccagatccctggcaagtgtagcggtcacgctgcgcgtaaccaccacacccgccgcgcttaatgcg ccgctacagggcgcgtcag

Supplementary Table 4. Plasmid Table

Plasmid name	Parent Plasmid	Name in figure	Insert
pJG1013	pJG743	His_{6}-TclI	His_{6}-TclI
pJG1066	pJG743	His_{6}-TclJ	His_{6}-TclJ
pJG1068	pJG743	TclN-His6	TclN-His6
pJG1070	pJG743	TclIJN	TclI, TclJ, TclN
pJG958	pJG743	His6-TclIJN $^{\text {a }}$	His6-TclI, TclJ, TclN
pJG964	pJG743	His_{6}-tclIJ	His_{6}-TclI, TclJ
pJG965	pJG743	His6-TclIN	His 6 -TclI, TclN
pJG968	pJG743	His6-tclIE(GST-E) $^{\text {a }}$	His6-TclI, GST-TclE
pJG1047	pJG743	N/A	His_{6} - $\mathrm{Tclin}_{\text {NTD }}$
pJG1051	pJG743	N/A	His_{6} - $\mathrm{TclI}_{\text {NTD }}$, TclJ
pJG1053	pJG743	N/A	$\mathrm{His}_{6}-\mathrm{TclI}_{\mathrm{NTD}}, \mathrm{TclN}$
pJG1052	pJG743	N/A	His_{6}-Tclinti ${ }_{\text {d }}$, GST-TclE
pJG1038	pJG743	N/A	His_{6}-TclICTD,
pJG1040	pJG743	N/A	His_{6}-Tclictid ${ }_{\text {Cld }}$, TclJ
pJG1042	pJG743	N/A	His_{6} - $\mathrm{TcII}_{\text {CTD }}$, TclN
pJG1041	pJG743	N/A	
pJG1062	pJG743	N/A	His6-TclI, TclJ ${ }_{\text {NTD } 1}$
pJG1061	pJG743	N/A	His $6-T \mathrm{TclI}^{\text {, TclJ }}$ NTD2
pJG1065	pJG743	N/A	His_{6}-TclI, GST-TclE ${ }_{\text {leader }}$
pJG985	pED022	GST-TclE	GST-TclE
L501A2	N/A	N/A	GST-TclE

Supplementary Table 5. Strain Table

Strain	Background	Plasmid(s)
D104	BL21	pJG743
D158	BL21	pJG1012
D148	BL21	pJG1066
D149	BL21	pJG1068
D143	BL21	pJG985
D142	BL21	pED022
D091	BL21	pED022, pJG743
D147	BL21	pJG985, pJG1070
D094	BL21	pJG985. pJG958
D101	BL21	pJG964
D102	BL21	pJG965
D103	BL21	pJG968
D136	BL21	pJG1047
D132	BL21	pJG1051
D133	BL21	pJG1052
D134	BL21	pJG1053
D135	BL21	pJG1039
D116	BL21	pJG1040
D118	BL21	pJG1041
D117	BL21	pJG1042
D074	Nico 21	pJG958
D075	Nico 21	pJG964
D076	Nico 21	pJG965
D154	BL21	pJG1061
D155	BL21	pJG1062
D153	BL21	pJG1063
PB524	DH5a	L501A2

